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The hardness and power of many-body
quantum mechanics



Many-body quantum mechanics is hard



Many-body Quantum mechanics is still hard today

Since Paul Dirac in 1929, the standard model of particle physics has been
completed with measurement at LHC

1. Hilbert space H (the fundamental particles and their statistics)
2. Hamiltonian H (all the forces/interactions between the particles)

The problem is still the same



Quantum many-body problem: simplest setting

Quantum N-body problem

N spins on a lattice
H =

⊗n
j=1 Hj with Hj = C2

2N classical degrees of freedom

Objective:

Finding the low energy states of

H =

N∑
k=1

hk

difficult: H is a 2N × 2N matrix
Fugaku – 2 EFLOPS – 150 PB
cannot diagonalize 4 × 4 × 4 spins
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Open Problems in Theoretical Physics

Fundamental Physics

Strong interaction
between quarks and
gluons

Allows the formation of
the nucleus

Chimie

Interactions electrons -
electrons and electrons -
protons

Allows the formation of
complex molecules

Condensed matter

Strong interactions
between electrons

Enables
superconductivity in
cuprate materials
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Practical consequences

Nuclear Physics

Properties of nuclei
must be measured

Catalysis

Ammonia is expensive
⩾ 1% CO2 worldwide

High Tc
superconductors

No lossless electricity
transfer
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Quantum mechanics is only as hard as quantum
mechanics

Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy

Feynman foresaw Quantum Simulation
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A wide range of options

Many ways to encode ψ

1. Electronic states of trapped ions
2. Electronic states of trapped cold neutral atoms
3. Mesoscopic currents in superconducting circuits
4. Spin states
5. Light states



Cold atoms
▶ Quera (Harvard spin-off)
▶ Pasqal (Institut d’optique spin-off)

Blustein et al. Nature 2023



Superconducting circuits
▶ Transmon qubits: Google, IBM, Rigetti
▶ Cat qubits Amazon, Alice & Bob

Google quantum computer



The variational method



Variational optimization
Generic state ∈ H = (Cd)⊗N :

|ψ⟩ =
∑

i1,i2,··· ,in

ci1,i2,··· ,iN |i1, · · · , iN⟩

Exact variational
optimization
To find the ground state:

|0⟩ = min
|ψ⟩∈H

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩

▶ dim H = dN
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Approx. variational
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To find the ground state:

|0⟩ = min
|ψ⟩∈M

⟨ψ|H |ψ⟩
⟨ψ|ψ⟩
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An idea popular in many fields
▶ Mean field approximation (of which TNS are an extension)

ψ(x1, x2, · · · , xn) = ψ1(x1)ψ2(x2) · · ·ψn(xn)

▶ Special variational wave functions in Quantum chemistry (whole industry
of ansatz)

▶ Moore-Read wavefunctions in the study of the quantum Hall effect

ψ(x1, x2, · · · , xn) =
〈
ϕ̂(x1)ϕ̂(x2) · · · ϕ̂(xn)

〉
CFT

▶ Fully connected and convolutional neural networks used in machine
learning
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State compression and the area law



The room for compression
atypicality =⇒ compressibility

▶ For image classification, exponentially many classifiers NNpixels
colors but

cat image dog image “typical” image

▶ efficient classifiers f (x) with only Poly(Npixels) ≪ NNpixels
colors parameters

▶ What is the atypicality analog for quantum? → Entanglement
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Interesting states are weakly entangled
Low energy state
|ψ⟩ = |0⟩ or |1⟩ ...

Reduced density
matrix
ρ = trDc

[
|ψ⟩⟨ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Area law

S ∝ |∂D|
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Typical states are strongly entangled
Random state
|ψ⟩ = UHaar|trivial⟩

Reduced density
matrix
ρ = trDc

[
|ψ⟩⟨ψ|

]
Entanglement
entropy
S = −tr

[
ρ log ρ

]
Volume law

S ∝ |D|



Tensor network states



Constructing weakly entangled states

1. Put auxiliary maximally
entangled states between
sites

=

χ∑
j=1

|j⟩|j⟩

2. Map to initial Hilbert space
on each site

= A : (Cχ)⊗4 → Cd
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Tensor network states: definition
Why “tensor” network?

A : (Cχ)⊗4 → Cd −→ Ai
j1,j2,j3,j4

|A⟩ =

with tensor contractions on links

Optimization
Find best A for fixed χ (d × χ4 coeff.)

E0 ≃ min
A

⟨A|Ĥ |A⟩
⟨A|A⟩

for example go down ∂E
∂Ai

j1,j2,j3,j4
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Generalizations: different tensor networks

Matrix Product States (MPS)

Projected Entangled Pair States
(PEPS)

Multi-scale Entanglement
Renormalization Ansatz (MERA)



Some facts
d = 1 spatial dimension

Theorems (colloquially)

1. For gapped H , TNS |A⟩
approximate well |0⟩ with χ fixed

2. All |A⟩ are ground states of
gapped H

d ⩾ 2 spatial dimension

Folklore

1. For gapped H , TNS |A⟩
approximate well |0⟩ with χ fixed

2. Most |A⟩ are ground states of
gapped H
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State of the art
Dense: all states approximable (trivial)
Efficient: cost Poly(χ) error superPoly(χ−1)

It’s all a matter of prefactors and exponents
▶ 1 space dimension → χ ⩾ 1000 → machine precision

(MPS results “numerically exact”)
▶ 2 space dimensions → χ ∼ 10 → efficient

(PEPS efficient to 10−2 − 10−6 depending on problems)
▶ 3 space dimensions → χ ∼ 3 → theoretically efficient but too expensive

Beyond ground states
▶ Low-lying spectrum - excited states (on the G.S. tangent space)
▶ Thermal states (because area law)
▶ Real-time evolution (but no long time quench)
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Beyond area law (no free lunch)

A sad fact
Scrambling of real-time evolution creates volume law entanglement even with
local gapped H

Motivates Google supremacy experiment [Nature, 2020]

Still possible compression [Zhou, Stoudenmire, Waintal, PRX 2020]
but no exponential miracle IF errors low enough
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Right now? For useless tasks

Best quantum computer is probably Willow 105 by Google
▶ Previous Sycamore 53 claimed supremacy but tensors fought back
▶ Sycamore 72 wins for a carefully designed useless task
▶ Willow 105 wins for a carefully designer useless task with a lot of margin



Right now

IBM – June 14th 2023 in Nature
Evidence for the utility of quantum computing before fault tolerance

▶ 127 superconducting qubits
▶ First example of a useful case study



Right now?

Flatiron – June 26th 2023 on ArXiv
Efficient tensor network simulation of IBM’s Eagle [...]

▶ Classical simulation via state compression
▶ Better precision than the quantum computer



Quantum Field Theory



The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

|Ψ⟩ =
∑

i1,i2,··· ,iN

ci1i2···iN |i1i2 · · · iN⟩ −→ |Ψ⟩ =
∫
Dϕ ψ(ϕ) |ϕ⟩

New problem: 2N C-parameters → dimH = ∞∞ even at finite size!

Question Can one compress ∞∞ down to a manageable number of parameters?



ϕ4
2 testbed

Renormalized ϕ4
2 theory

H =

∫
dx : π2 :a

2 +
: (∇ϕ)2 :a

2 +
m2

2 : ϕ2 :a +g : ϕ4 :a

1. Rigorously defined relativistic QFT without cutoff (Wightman QFT)
2. Vacuum energy density finite
3. Very difficult to solve unless g ≪ m2 (perturbation theory)
4. Phase transition around fc = g

4m2 = 11 i.e. g ≃ 2.7 in mass units
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Two (main) games in town

Perturbation theory
+ resummation

state of the art is O(g8)

arXiv:1805.05882
Serone, Spada, Villadoro

Lattice Monte-Carlo

arXiv:1807.03381
Bronzin, De Palma, Guagnelli



Results

1 2 3 4 5

g

0.0

0.2

0.4

0.6

0.8

|〈φ
〉|

D = 5

D = 10

D = 15

D = 20

Number of parameters optimized: 2D2, cost ∝ D3



Grand challenge

Grand challenge
Compress field wavefunctions ψ(ϕ) and use them to solve the
continuous-many-body problem directly leveraging a
continuous generalization of tensor networks

non-relativistic relativistic critical
d = 1 space Verstraete-Cirac

2010
Tilloy
2021

d ⩾ 2 space Tilloy-Cirac
2019

no idea heuristics clear definition fast algorithm



Summary

To solve the quantum many-body problem:
▶ Quantum computer / simulators
▶ Classical compression

So far, best compression is tensor network states
▶ Works well in d = 1, ok in d = 2, not so well d = 3
▶ Works well for low energy, not so well for quenches

State of the art:
▶ For taylor made problems: current quantum computers win
▶ For physically relevant problems: current tensor network methods win


