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The hardness and power of many-body
quantum mechanics



Many-body quantum mechanics is hard




Many-body Quantum mechanics is still hard today

Since Paul Dirac in 1929, the standard model of particle physics has been
completed with measurement at LHC

1. Hilbert space # (the fundamental particles and their statistics)
2. Hamiltonian H (all the forces/interactions between the particles)
The problem is still the same



Quantum many-body problem: simplest setting
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Quantum many-body problem: simplest setting

Objective:

Finding the low energy states of

N
H = Z hy
k=1

difficult: H is a 2N x 2N matrix

Quantum N-body problem

N spins on a lattice
T = ®J'7:1%? with 7% = C?

2N classical degrees of freedom

Fugaku — 2 EFLOPS - 150 PB
cannot diagonalize 4 x 4 x 4 spins
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Open Problems in Theoretical Physics

Fundamental Physics Chimie Condensed matter

Interactions electrons -

Strong interaction
electrons and electrons -

Strong interactions

between quarks and between electrons
gluons protons

Enables
Allows the formation of Allows the formation of superconductivity in

the nucleus complex molecules cuprate materials
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Practical consequences

High T,

Nuclear Physics Catalysis
superconductors

N+ 3H

o 314

:
hd
A

1129 kj/mol 1400 ~960 389

543 460
AH=46 kj/mol
50| |

Properties of nuclei Ammonia is expensive No lossless electricity
must be measured > 1% CO2 worldwide transfer



Quantum mechanics is only as hard as quantum
mechanics

Simulating Physics with Computers
Richard P. Feynman
Depariment of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you'd better make it quantum mechanical, and by golly it's a
wonderful problem, because it doesn't look so easy



Quantum mechanics is only as hard as quantum
mechanics

Simulating Physics with Computers
Richard P. Feynman
Depariment of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you'd better make it quantum mechanical, and by golly it's a
wonderful problem, because it doesn't look so easy

Feynman foresaw Quantum Simulation



A wide range of options

Many ways to encode

Electronic states of trapped ions

Electronic states of trapped cold neutral atoms
Mesoscopic currents in superconducting circuits
Spin states

Light states

Gk wb-



Cold atoms

» Quera (Harvard spin-off)
» Pasqal (Institut d'optique

Blustein et al.

spin-off)
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Superconducting circuits

» Transmon qubits: Google, IBM, Rigetti
» Cat qubits Amazon, Alice & Bob

Google quantum computer

LA VA XA ¥ A XA
Oxb OxQ 0x0 OxQ 0x0 Ox

x Qubit @ Adiustable coupler



The variational method



Variational optimization

Generic state € # = (C?)®N:

W) = Z Civyiayeeeyiy |1y *++ 5 i)
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Exact variational
optimization

To find the ground state:

i (1A)
|0>_|¢>e9f (Whp)

» dim .7 = dV



Variational optimization

Generic state € # = (C?)®N:

W) = Z Civyioyeeeyiy 1y *++ 5 i)

15025+ yin

Approx. variational
optimization

To find the ground state:

_ min (WIARY)
|0>_|w>e/f (Whp)

» dim.Z o Poly(N) or fixed



An idea popular in many fields
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An idea popular in many fields
» Mean field approximation (of which TNS are an extension)

lI)(X1>X2> T )Xn) - 1I)l(xl)ll)2(x2) o 'q)n(xn)

» Special variational wave functions in Quantum chemistry (whole industry
of ansatz)
» Moore-Read wavefunctions in the study of the quantum Hall effect

B0,y xm) = (Bla)dl) - lx) )

CFT

» Fully connected and convolutional neural networks used in machine
learning

Feature maps




State compression and the area law



The room for compression

atypicality = compressibility
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The room for compression

atypicality = compressibility

. I . . Npiels
» For image classification, exponentially many classifiers N_*>* but

colors
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cat image dog image “typical” image

» efficient classifiers f(x) with only Poly(Npixels) < Vi parameters

colors

ing ~Fully connected

» What is the atypicality analog for quantum? — Entanglement



Interesting states are weakly entangled
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Typical states are strongly entangled

Random state
W) = Upaarltrivial)

Reduced density
matrix

p = troe [} (W]

Entanglement
entropy
S= —tr[p log p]

Volume law

S x |D|



Tensor network states



Constructing weakly entangled states



Constructing weakly entangled states

1. Put auxiliary maximally
entangled states between
sites

Jj=1



Constructing weakly entangled states

1. Put auxiliary maximally
entangled states between
sites




Tensor network states: definition

Why “tensor” network?
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Tensor network states: definition

Why “tensor” network?

. J2 i i3
e - >

I Ja

. X\ R4 d i
A (C) = C — A s _ _ _
with tensor contractions on links

Optimization

Find best A for fixed x  (d x x* coeff.)

J0E

i
0 AJ'1 25J3 4

for example go down




Generalizations: different tensor networks

Matrix Product States (MPS)

SALVLLLLLLLL L L

Projected Entangled Pair States Multi-scale Entanglement
(PEPS) Renormalization Ansatz (MERA)




Some facts

d = 1 spatial dimension

Theorems (colloquially)

1. For gapped H, TNS |A)
approximate well |0) with x fixed

2. All |A) are ground states of
gapped H



Some facts

d =1 spatial dimension d > 2 spatial dimension

Theorems (colloquially) Folklore
1. For gapped H, TNS |A) 1. For gapped H, TNS |A) _
approximate well |0) with x fixed approximate well |0) with x fixed
2. All |A) are ground states of 2. Most |A) are ground states of
gapped H gapped H
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State of the art

Dense: all states approximable (trivial)
Efficient: cost Poly(x) error superPoly(x 1)

It's all a matter of prefactors and exponents

» 1 space dimension — x > 1000 — machine precision
(MPS results “numerically exact”)

» 2 space dimensions — X ~ 10 — efficient
(PEPS efficient to 1072 — 107° depending on problems)

» 3 space dimensions — X ~ 3 — theoretically efficient but too expensive

Beyond ground states
» Low-lying spectrum - excited states (on the G.S. tangent space)
» Thermal states (because area law)

» Real-time evolution (but no long time quench)



Beyond area law (no free lunch)
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local gapped H



Beyond area law (no free lunch)

A sad fact

Scrambling of real-time evolution creates volume law entanglement even with
local gapped H

Motivates Google supremacy experiment [Nature, 2020]




Beyond area law (no free lunch)

A sad fact

Scrambling of real-time evolution creates volume law entanglement even with
local gapped H

Motivates Google supremacy experiment [Nature, 2020]

Still possible compression [Zhou, Stoudenmire, Waintal, PRX 2020]
but no exponential miracle IF errors low enough



Right now? For useless tasks

Best quantum computer is probably Willow 105 by Google
» Previous Sycamore 53 claimed supremacy but tensors fought back
» Sycamore 72 wins for a carefully designed useless task

» Willow 105 wins for a carefully designer useless task with a lot of margin



Right now

IBM — June 14th 2023 in Nature
Evidence for the utility of quantum computing before fault tolerance

» 127 superconducting qubits

» First example of a useful case study



Right now?

Flatiron — June 26th 2023 on ArXiv
Efficient tensor network simulation of IBM'’s Eagle |...]

Eagle Processor Layout Classical Tensor Network Ansatz :
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» Classical simulation via

» Better precision than the quantum computer

state compression




Quantum Field Theory



The quantum many-body problem in the continuum

From the lattice to the continuum and Quantum Field Theory (QFT)

.............
.............
.............
.............
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.............
.............

W)= Y Gudiheci)  — )= Do we]0)
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New problem: 2V C-parameters — dimJ# = co™ even at finite size!

Question Can one compress co® down to a manageable number of parameters?
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¢35 testbed

Renormalized ¢} theory

2. . 2, 2
H:J‘dxjt -a+-(V¢) 'a+m7:c[)2:a+g:cb4:a

1. Rigorously defined relativistic QF T without cutoff (Wightman QFT)
2. Vacuum energy density finite

3. Very difficult to solve unless g << m? (perturbation theory)

4. Phase transition around f. = ;= L5 =11ie. g~ 2.7 in mass units



Two (main) games in town

Perturbation theory
+ resummation

A = —12@g7+288 @g%
- (2304 Z +2592 @ + 10368 @) g'+0(g")

Py = —96—>—g*+ {uszﬁ + 3456 A—] - {41472@ + 1usz4i
+82944-@- n 41472@ + 82944_&_ + 27048_@_} ¢+ 0(e°),
state of the art is O(g®)

arXiv:1805.05882
Serone, Spada, Villadoro

Lattice Monte-Carlo
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Results
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Grand challenge

Grand challenge
Compress field wavefunctions P (¢$) and use them to solve the ()
continuous-many-body problem directly leveraging a

continuous generalization of tensor networks

non-relativistic relativistic critical
d =1 space
d > 2 space Tilloy-Cirac

2019
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Summary

To solve the quantum many-body problem:
» Quantum computer / simulators
» Classical compression
So far, best compression is tensor network states
» Works well in d =1, ok in d =2, not sowell d =3
» Works well for low energy, not so well for quenches
State of the art:
» For taylor made problems: current quantum computers win

» For physically relevant problems: current tensor network methods win



