A kinetic model of jet-corona coupling in accreting black holes

GRAVITY+ Workshop / Centers of Galaxies; Meudon Château November 20, 2024

John Mehlhaff in collaboration with Benjamin Crinquand and Benoît Cerutti

Univ. Grenoble Alpes, CNRS, IPAG; Grenoble, France

erc

<u>Outline</u>

Black hole accretion disk coronae primer

Insights from BHcorona simulations

Black hole accretion disk coronae primer

Insights from BHcorona simulations

Solar Dynamics Observatory

Reconnection as a relativistic particle accelerator

Coronal reconnection and jet launching

Inter-corona reconnection **BH-corona reconnection** Rotational shear: $\Omega(R)$ Rotational shear: $\Omega(R)$ $< v_R < 0$ $< v_R < 0$ VS $< v_R < 0$ $\langle -v_R < 0 \rangle$ Reconnection

Key idea: horizon-penetrating magnetic field → jet (Blandford & Znajek 1977)

Adapted from Davis+ 2020

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

<u>Outline</u>

Black hole accretion disk coronae primer

A model for a BH coupled to its corona

Insights from BHcorona simulations

Ζ

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
 - Potential jet formation
- Plasma description must capture:
 - \circ General relativity
 - \circ Particle acceleration
 - o Radiation
 - \circ Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Ζ

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
 - Potential jet formation
- Plasma description must capture:
 - o General relativity
 - o Particle acceleration
 - o Radiation
 - \circ Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Ζ

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
 - Potential jet formation
- Plasma description must capture:
 - o General relativity
 - o Particle acceleration
 - o Radiation
 - \circ Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Ζ

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
 - Potential jet formation
- Plasma description must capture:
 - o General relativity
 - o Particle acceleration
 - o Radiation
 - \circ Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
 - Potential jet formation
- Plasma description must capture:
 - o General relativity
 - Particle acceleration
 - o Radiation
 - Reconnection

But how??

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Zeltron: a general relativistic particle-in-cell code*

$$\vec{F} = q\left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right) + \text{gravity}$$

Update (\vec{x}, \vec{p}) of all particles from \vec{E}, \vec{B}

 Δt

- Plasma description must capture:
 - o General relativity
 - Particle acceleration
 - Radiation
 - Reconnection

 $\vec{\nabla} \cdot \vec{B} = 0$ equation $\vec{\nabla} \cdot \vec{E} = 4\pi\rho$ $c\vec{\nabla} \times \vec{E} + \partial_t \vec{B} = 0$ $c\vec{\nabla} \times \vec{B} - \partial_t \vec{E} = 4\pi\vec{J}$

 $(\rho, \vec{f}) \rightarrow Maxwell's$ equations $\rightarrow (\vec{E}, \vec{B})$ Compute ρ and \vec{J} on grid from (\vec{x}, \vec{v}) of particles

*Cerutti et al. 2013, Parfrey et al. 2019

<u>Outline</u>

Black hole accretion disk coronae primer

Insights from BHcorona simulations

Simulating a minimal numerical model

GRPIC simulations:

Loop size: $10r_a$

Pair plasma

۲

•

- Ad-hoc injection enforces $n > n_0 (r_H/r)^2$
 - 2D axisymmetry

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
 - Potential jet formation
- Plasma description must capture:
 - o General relativity
 - Particle acceleration
 - o Radiation
 - \circ Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Bolometric luminosity is correlated with flux on BH

- Alternating loud/variable active and stable quiet periods
- Rapid variability during loud periods due to magnetic reconnection

Raytracing links observed variability in active periods

to reconnection

- High contrast (~10³) in observed intensity between active and quiet periods
- Relativistic compression and amplification of variability

Observers looking along BH-disk current sheet witness most extreme variability $i = 40.5^{\circ}$; $(ct_{observed} - r_{observer})/r_g = 2376$

- A "blazar effect" photons are beamed • toward this observer
- Brightening by up to an order of magnitude
- Rise times as short as r_a/c

 $r \sin \theta / r_a$

<u>The magnetosphere dissipates ~1/3 of the injected</u> <u>Poynting flux</u>

We evaluate the contributions to Poynting's Theorem (quoted in flat space), $\frac{1}{8\pi}\partial_t(E^2 + B^2) + \vec{\nabla} \cdot \vec{S} = -\vec{J} \cdot \vec{E},$

We use the integration surface:

Decreasing loop size enhances coronal activity

Reminder for loop diameter $10r_q \gg r_H$: Here's a loop diameter of $3r_q$ (similar to BH size): $10^2 \ 10^{-2}$ 10^{0} 10¹ 10^{-1} 10^{0} 10^{0} 10¹ $10^2 \ 10^{-2}$ 10^{-1} 10^{0} $\langle \gamma \rangle - 1 + \Omega / \Omega_{BH}$ Ω/Ω_{BH} $\langle \gamma \rangle - 1$ 25 25 -20 -20 rcos 0/r_g $r\cos\theta/r_g$ 15 10 10 $1035r_a/c$ $0r_q/c$ -20 -10 10 20 -²0 -1010 20 0 0 $r\sin\theta/r_a$ $r \sin \theta / r_a$

- Strongest dissipation on disk-BH field lines
- Coronal loops open but particle acceleration is weak

- Disk-BH field lines are active but short-lived
- Intense inter-loop reconnection and particle acceleration

<u>Outline</u>

Black hole accretion disk coronae primer

Insights from BHcorona simulations

Application to changing-look event in 1ES1927+654

Theoretical scenario: magnetic flux inversion

Application to changing-look event in 1ES1927+654

Application to X-ray binary hard-to-soft state transitions

Conclusions

- GR particle-in-cell simulations can probe the energy budget and radiative signatures of a black hole feeding on its accretion disk corona
- Loop advection/ejection provides a secular variability timescale
 - >10³ brightness contrast between loud and quiet periods
- Magnetic reconnection is the main dissipation mechanism
 - Leads to rapid variability
 - Relativistic compression and amplification
- Radiative signals match 1ES1927+654 changing-look event
- Loop size is correlated with jet power; anticorrelated with dissipation and coronal activity
- X-ray binary hard-to-soft state transitions reminiscent of a BH feeding on large coronal loops

Thank you!

