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See, e.g., Shakura & Sunyaev 1973, 
Liang & Price 1977, Galeev et al. 1979
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See, e.g., Shakura & Sunyaev 1973, 
Liang & Price 1977, Galeev et al. 1979
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10+ keV

Adapted from
Zdziarski et al. 2017

Thin accretion disks and their coronae

But need a particle 
acceleration 
mechanism
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𝛽𝑝𝑙𝑎𝑠𝑚𝑎 = 8𝜋𝑛𝑇0/𝐵0
2 ≪ 1

Reconnection as a relativistic particle accelerator

𝜎𝑐 ≫ 1
𝛽𝑝𝑙𝑎𝑠𝑚𝑎 ≪ 1

𝜎𝑐 ≪ 1
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Coronal reconnection and jet launching Key idea: horizon-penetrating 
magnetic field → jet

(Blandford & Znajek 1977)

Adapted from
Davis+ 2020

Inter-corona reconnection BH-corona reconnection

𝑣𝑅 < 0 

𝑣𝑅 < 0 

𝑣𝑅 < 0 

𝑣𝑅 < 0 

vs

How much energy does magnetic 
reconnection dissipate? What region 
dominates?

Can a strong jet be launched?

What are the observable signatures?

Rotational shear: Ω(𝑅) Rotational shear: Ω(𝑅)

Driving questions:

Reconnection
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Constructing a minimal numerical model
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How much energy does magnetic 
reconnection dissipate? What region 
dominates?

Can a strong jet be launched?

What are the observable signatures?

Driving questions:

Model needs:
• Rotational shear
• Accretion
• Magnetic coupling (disk-disk + disk-BH)

• Potential jet formation
• Plasma description must capture:

o General relativity
o Particle acceleration
o Radiation
o Reconnection

Initial Condition
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Constructing a minimal numerical model

𝑅

𝑧

BH
(spinning)

Model needs:
• Rotational shear
• Accretion
• Magnetic coupling (disk-disk + disk-BH)

• Potential jet formation
• Plasma description must capture:

o General relativity
o Particle acceleration
o Radiation
o Reconnection

xΩ𝐾𝑒𝑝(𝑅) x

𝑣𝑅 < 0 

x

How much energy does magnetic 
reconnection dissipate? What region 
dominates?

Can a strong jet be launched?

What are the observable signatures?

Driving questions:Desired Behavior

Jet

Continued 
Reconnection

But how??



Zeltron: a general relativistic particle-in-cell code*

Compute 𝜌 and Ԧ𝐽 on 
grid from ( Ԧ𝑥, Ԧ𝑣)  of 

particles

Δ𝑡

𝜌, Ԧ𝐽 → Maxwell’s 
equations → (𝐸, 𝐵)

Update ( Ԧ𝑥, Ԧ𝑝) of all 
particles from 𝐸, 𝐵

+ gravity

• Plasma description must capture:
o General relativity
o Particle acceleration
o Radiation
o Reconnection

✓

*Cerutti et al. 2013, Parfrey et al. 2019
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Simulating a minimal numerical model

Model needs:
• Rotational shear
• Accretion
• Magnetic coupling (disk-disk + disk-BH)

• Potential jet formation
• Plasma description must capture:

o General relativity
o Particle acceleration
o Radiation
o Reconnection

How much energy does magnetic 
reconnection dissipate? What region 
dominates?

Can a strong jet be launched?

What are the observable signatures?

Driving questions:

GRPIC simulations:
• Pair plasma
• Loop size: 10𝑟𝑔

• Ad-hoc injection enforces 𝑛 > 𝑛0 𝑟𝐻/𝑟 2

• 2D axisymmetry

Loop diameter: 10r𝑔



Bolometric luminosity is correlated with flux on BH
• Alternating loud/variable active and stable quiet periods
• Rapid variability during loud periods due to magnetic reconnection

“active”

“quiet” “quiet” “quiet”

“active” “active”



movie duration

Raytracing links observed variability in active periods 
to reconnection

O
bs

er
ve

d 
In

te
ns

ity

Lightcurve for 40.5∘-inclined observer

Synthetic Image
Backtraced

photons Ph
ot

on
 E

n.
 D

en
s.

 ×
𝑟

/𝑟
𝐻

2

• High contrast (~103) in observed 
intensity between active and quiet 
periods

• Relativistic compression and 
amplification of variability



Observers looking along BH-disk current sheet witness 
most extreme variability

Backtraced
photonsSynthetic Image

• A “blazar effect” – photons are beamed 
toward this observer

• Brightening by up to an order of magnitude
• Rise times as short as 𝑟𝑔/𝑐



The magnetosphere dissipates ~1/3 of the injected 
Poynting flux

∼ 1/3

∼ 1/3

We evaluate the contributions to 
Poynting’s Theorem (quoted in flat space),

1

8𝜋
𝜕𝑡 𝐸2 + 𝐵2 + ∇ ⋅ Ԧ𝑆 = − Ԧ𝐽 ⋅ 𝐸,

We use the integration surface:

𝑟𝑚𝑖𝑛 = 𝑟𝐻

𝑟𝑚𝑎𝑥 = 25 ሶ𝐸𝑜𝑢𝑡,𝑃𝑜𝑦𝑛𝑡

ሶ𝐸𝑖𝑛𝑗,𝑑𝑖𝑠𝑘

ሶ𝐸𝑖𝑛𝑗,𝐵𝐻



Reminder for loop diameter 10𝑟𝑔 (≫ 𝑟𝐻):

• Strongest dissipation on disk-BH field lines
• Coronal loops open but particle acceleration 

is weak

Here’s a loop diameter of 3𝑟𝑔 (similar to BH size):

• Disk-BH field lines are active but short-lived
• Intense inter-loop reconnection and particle 

acceleration

Decreasing loop size enhances coronal activity
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Application to changing-look event in 1ES1927+654 
Optical/UV/X-ray observations Theoretical scenario: magnetic flux inversion

Adapted from
Trakhtenbrot et al. 2019

Scepi et al. 2021



Application to changing-look event in 1ES1927+654 
Theoretical scenario: magnetic flux inversion

Scepi et al. 2021

Simulations

• Rapid variability as fast as ∼ 𝑟𝑔/𝑐 
up to a factor of 10 ✓

• Brightness contrast of ≳ 103 ✓
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Application to X-ray binary hard-to-soft state transitions
Fender et al. 2004 General features of hard-to-soft transition:

• Correlated X-ray and radio (jet) luminosity
• Radio and X-ray peak coincide

• Hard state: steady/slow jet
• Soft state: no jet
• Transition: fast/episodic jet

Connection to simulations:
• Presence of jet during hard-to-soft 

transition suggests large loops
• Could a variable/episodic jet be the 

result of loop ejection?



Conclusions
• GR particle-in-cell simulations can probe the energy 

budget and radiative signatures of a black hole feeding on 
its accretion disk corona

• Loop advection/ejection provides a secular variability 
timescale
o >103 brightness contrast between loud and quiet 

periods
• Magnetic reconnection is the main dissipation mechanism

o Leads to rapid variability
o Relativistic compression and amplification

• Radiative signals match 1ES1927+654 changing-look event
• Loop size is correlated with jet power; anticorrelated with 

dissipation and coronal activity
• X-ray binary hard-to-soft state transitions reminiscent of a 

BH feeding on large coronal loops
Thank you!
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