A kinetic model of jet-corona coupling in accreting black holes

GRAVITY+ Workshop / Centers of Galaxies; Meudon Château November 20, 2024

John Mehlhaff *in collaboration with Benjamin Crinquand and Benoît Cerutti*

Univ. Grenoble Alpes, CNRS, IPAG; Grenoble, France

erc

Black hole accretion disk coronae primer

Insights from BHcorona simulations

Black hole accretion disk coronae primer

Insights from BHcorona simulations

Solar Dynamics Observatory

Reconnection as a relativistic particle accelerator

Coronal reconnection and jet launching Fig. Key idea: horizon-penetrating

Inter-corona reconnection BH-corona reconnection $\left| \bigtriangleup v_R \right| < 0$ $\leftarrow v_R < 0$ \rightleftharpoons $\leftarrow v_R < 0$ $=$ $\leftarrow v_R < 0$ vs Rotational shear: $\Omega(R)$ Rotational shear: $\Omega(R)$ *Reconnection*

magnetic field \rightarrow jet (Blandford & Znajek 1977)

Adapted from Davis+ 2020

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Black hole accretion disk coronae primer

A model for a BH coupled to its corona

Insights from BHcorona simulations

Z

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
	- Potential jet formation
- Plasma description must capture:
	- o General relativity
	- o Particle acceleration
	- o Radiation
	- o Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Z

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
	- Potential jet formation
- Plasma description must capture:
	- o General relativity
	- o Particle acceleration
	- o Radiation
	- o Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Z

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
	- Potential jet formation
- Plasma description must capture:
	- o General relativity
	- o Particle acceleration
	- o Radiation
	- o Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Ζ

Model needs:

- Rotational shear
- Accretion
- Magnetic coupling (disk-disk + disk-BH)
	- Potential jet formation
- Plasma description must capture:
	- o General relativity
	- o Particle acceleration
	- o Radiation
	- o Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Model needs:

- Rotational shear
- **Accretion**
- Magnetic coupling (disk-disk + disk-BH)
	- Potential jet formation
- Plasma description must capture:
	- o General relativity
	- **Particle acceleration**
	- o Radiation
	- o Reconnection

But how??

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Zeltron: a general relativistic particle-in-cell code*

$$
\vec{F} = q\left(\vec{E} + \frac{\vec{v}}{c} \times \vec{B}\right) + \text{gravity}
$$

Update (\vec{x}, \vec{p}) of all particles from \vec{E} , \vec{B}

Δ

- Plasma description must capture:
	- o General relativity
	- **Particle acceleration**
	- o Radiation
	- o Reconnection

 $\vec{\nabla} \cdot \vec{B} = 0$
 $\vec{\nabla} \cdot \vec{E} = 4\pi\rho$ $c\vec{\nabla}\times\vec{E}+\partial_{t}\vec{B}=0$ $c\vec{\nabla}\times\vec{B}-\partial_t\vec{E}=4\pi\vec{J}$

 $(\rho,\vec{f})\to$ Maxwell's equations \rightarrow (\vec{E}, \vec{B}) Compute ρ and \vec{J} on grid from (\vec{x},\vec{v}) of particles

*Cerutti et al. 2013, Parfrey et al. 2019

✓

Black hole accretion disk coronae primer

A model for a BH coupled to its corona

Insights from BHcorona simulations

Simulating a minimal numerical model

GRPIC simulations:

Loop size: $10r_a$

• Pair plasma

 $r\text{cos}\,\theta/r_g$

 $5 \cdot$

 $0r_a/c$

 -20

 -10

• Ad-hoc injection enforces $n > n_0 (r_H/r)^2$

Loop diameter: $10r_a$

 10

20

• 2D axisymmetry

 Ω

 $r\sin\theta/r_a$

Model needs:

- Rotational shear
- **Accretion**

 $10⁰$

- Magnetic coupling (disk-disk + disk-BH)
	- Potential jet formation
- Plasma description must capture:
	- o General relativity
	- o Particle acceleration
	- o Radiation
	- o Reconnection

Driving questions:

How much energy does magnetic reconnection dissipate? What region dominates?

Can a strong jet be launched?

Bolometric luminosity is correlated with flux on BH

- Alternating loud/variable **active** and stable **quiet** periods
- Rapid variability during loud periods due to magnetic reconnection

Raytracing links observed variability in active periods

to reconnection

- High contrast (\sim 10³) in observed intensity between active and quiet periods
- Relativistic compression and amplification of variability

Observers looking along BH-disk current sheet witness most extreme variability $i = 40.5$ °; ($ct_{observed} - r_{observer}$)/ $r_g = 2376$

- A "blazar effect" photons are beamed toward this observer
- Brightening by up to an order of magnitude
- Rise times as short as r_a/c

The magnetosphere dissipates ~1/3 of the injected Poynting flux

We evaluate the contributions to Poynting's Theorem (quoted in flat space), 1 $\frac{1}{8\pi}\partial_t(E^2+B^2)+\vec{\nabla}\cdot\vec{S}=-\vec{J}\cdot\vec{E},$

We use the integration surface:

Decreasing loop size enhances coronal activity

Reminder for loop diameter $10r_a \gg r_H$): Here's a loop diameter of $3r_q$ (similar to BH size): $10⁰$ 10^1 10^2 10^{-2} 10^{-1} $10¹$ 10^2 10^{-2} 10^{-1} $10⁰$ $10⁰$ $10⁰$ $\lfloor \frac{1}{2} \Omega / \Omega_{\rm BH} \rfloor$ $\Omega/\Omega_{\rm BH}$ $\langle \gamma \rangle - 1$ $\langle \gamma \rangle - 1$ $25 25 20 20$ $r\cos\theta/r_g$ rcos θ Ir $_g$ 15 10 $10¹$ $1035r_q/c$ \lceil Or_g/c -20 -10 $10[°]$ -20 -10 Ω 10 20 o 20 $rsin \theta/r_a$ $rsin \theta/r_a$

- Strongest dissipation on disk-BH field lines
- Coronal loops open but particle acceleration is weak
- Disk-BH field lines are active but short-lived
- Intense inter-loop reconnection and particle acceleration

Black hole accretion disk coronae primer

Insights from BHcorona simulations

Application to changing-look event in 1ES1927+654

Optical/UV/X-ray observations Theoretical scenario: magnetic flux inversion

Application to changing-look event in 1ES1927+654

Application to X-ray binary hard-to-soft state transitions

Conclusions

- GR particle-in-cell simulations can probe the energy budget and radiative signatures of a black hole feeding on its accretion disk corona
- Loop advection/ejection provides a secular variability timescale
	- \circ >10³ brightness contrast between loud and quiet periods
- Magnetic reconnection is the main dissipation mechanism
	- o Leads to rapid variability
	- o Relativistic compression and amplification
- Radiative signals match 1ES1927+654 changing-look event
- Loop size is correlated with jet power; anticorrelated with dissipation and coronal activity
- X-ray binary hard-to-soft state transitions reminiscent of a BH feeding on large coronal loops

Thank you!

