Particle-in-cell simulations of inclined black hole magnetospheres

> Enzo Figueiredo Supervisor: Benoît Cerutti

European **Research Council**

 $-50+02$

250

100

50

 $1.0e+0$

 -0

 -2 -4

 $- -8$

 $-1.0 + C$

-
-
-

A few constraints on BH mass, matter density, magnetic field and jet power (BH spin?)

A few constraints on BH mass, matter density, magnetic field and jet power (BH spin?)

Wind-fed accretion of Sgr A* in the Galactic Center?

A few constraints on BH mass, matter density, magnetic field and jet power (BH spin?)

Wind-fed accretion of Sgr A* in the Galactic Center?

Impact on the generation of a jet?

Theoretical Understanding of the Jet Emission

Blandford & Znajek, 1977

Accretion of magnetized plasma, together with pair creation mechanisms, powers a highly magnetized jet

$$
L_{BZ}=\frac{1}{96}a^2B_0^2,\ a\ll 1
$$

Theoretical Understanding of the Jet Emission

Blandford & Znajek, 1977

Accretion of magnetized plasma, together with pair creation mechanisms, powers a highly magnetized jet

$$
L_{BZ}=\frac{1}{96}a^2B_0^2,\ a\ll 1
$$

Does it work? With microphysics involved? What if we loose axisymmetry?

- -
-

GRMHD

- Large scales, long term evolution
- No microphysics, mildly × magnetized plasma

- Large scales, long term evolution
- No microphysics, mildly X magnetized plasma

GR Force-Free Electrodynamics

- Large scales, highly magnetized plasma, cheap
- **X** No microphysics, ideal, degenerate MHD

- Large scales, long term evolution
- X No microphysics, mildly magnetized plasma

GR Force-Free Electrodynamics

- Large scales, highly magnetized plasma, cheap
- No microphysics, ideal, degenerate MHD

GR Particle-in-cell (PIC)

- Accurate modeling of plasma, particle acceleration
- Expensive, short scales

- Large scales, long term evolution
- X No microphysics, mildly magnetized plasma

GR Force-Free Electrodynamics

- Large scales, highly magnetized plasma, cheap
- \blacktriangleright No microphysics, ideal, degenerate MHD

GR Particle-in-cell (PIC)

- Accurate modeling of plasma, particle acceleration
- Expensive, short scales

- Large scales, long term evolution
- X No microphysics, mildly magnetized plasma

GR Force-Free Electrodynamics

- Large scales, highly magnetized plasma, cheap
- **X** No microphysics, ideal, degenerate MHD

GR Particle-in-cell (PIC)

- Accurate modeling of plasma, particle acceleration
- Expensive, short X scales

→ Disk accretion
→ Magnetospheric physics

- Large scales, long term evolution
- X No microphysics, mildly magnetized plasma

GR Force-Free Electrodynamics

- Large scales, highly magnetized plasma, cheap
- No microphysics, ideal, degenerate MHD

GR Particle-in-cell (PIC)

Accurate modeling of plasma, particle acceleration

Expensive, short

→ Disk accretion
→ Magnetospheric physics

BH Embedded in a Uniform Magnetic Field

 $a = 0.999$

BH Embedded in a Uniform Magnetic Field

BH Embedded in a Uniform Magnetic Field

What happens if the magnetic field is inclined with respect to the BH spin ?

Parfrey+2019

$$
\Rightarrow \text{Force-free like}
$$
\n
$$
\sigma = \frac{B^2}{4\pi n m_e c^2} \gg 1
$$
\n
$$
\kappa = \frac{n}{n_{GJ}} \gg 1 \quad n_{GJ} = \frac{\mathbf{\Omega} \cdot \mathbf{B}}{2\pi e c}
$$

$$
\Rightarrow \text{Force-free like}
$$
\n
$$
\sigma = \frac{B^2}{4\pi n m_e c^2} \gg 1
$$
\n
$$
\kappa = \frac{n}{n_{GJ}} \gg 1 \quad n_{GJ} = \frac{\mathbf{\Omega} \cdot \mathbf{B}}{2\pi e c}
$$

→ Starved magnetosphere

- Charge separation
- Regions with an unscreened parallel electric field

Parfrey+2019

Ad hoc injection

 $\sigma > \sigma_0$

Inclined Black Hole Magnetosphere

Bicak & Janis (1985)

Inclined Black Hole Magnetosphere

Bicak & Janis (1985)

Inclined Black Hole Magnetosphere

Bicak & Janis (1985)

> 15 millions CPU hours for 4 runs

→ Development of inward Poynting flux close to the separatrix → Outward EM flux rather comes from equatorial region of space-time

$$
L_{\rm EM}=\iint \Pi^r \sqrt{\gamma} {\rm d}\Omega
$$

$$
L_{\rm EM}=\iint \Pi^r \sqrt{\gamma}\mathrm{d}\Omega
$$

The Case of the Orthogonal Magnetosphere (χ = 85°)

The Case of the Orthogonal Magnetosphere (χ = 85°)

The Case of the Orthogonal Magnetosphere (χ = 85°)

→ Inward Poynting flux compensates EM energy extraction on the event horizon → Very interesting jet structure

Particle Energization

Particle Energization

Particle Energization

→ More features should appear with a more physical pair injection

Conclusions

- The jet always follows the magnetic direction
- Inclination has a strong impact on the jet's shape and power

- As the current layer always develop, magnetic reconnection provides efficient particle acceleration for all inclinations

Conclusions

- The jet always follows the magnetic direction
- Inclination has a strong impact on the jet's shape and power
- As the current layer always develop, magnetic reconnection provides efficient particle acceleration for all inclinations
- More analysis required to understand the physics involved here
- Crucial step into understanding of a wide range of phenomena: wind accretion (Sgr A*, …), NS-BH binaries, …
- Future work will involve more realistic pair production \rightarrow starved magnetospheres, lightcurves, polarization, ...