Recent advances in GRPIC modeling of black hole magnetospheres

Benoît Cerutti CNRS/Univ. Grenoble Alpes

Collaborators : B. Crinquand (Toulouse) G. Dubus (Grenoble), John Mehlhaff (Grenoble), I. El Mellah (Santiago), E. Figueiredo (Grenoble), A. Levinson (Tel Aviv), M. Mościbrodzka (Radboud), K. Parfrey (Princeton), A. Philippov (Maryland), J. Vos (Nijmegen)

RÉPUBLIQUE FRANÇAISE Liberté Égalité Francité

Université Grenoble Alpes

Gravity+ workshop, Meudon, November 20th, 2024

Black hole horizon-scale observations

<u>Non-thermal</u> synchrotron radiation => particle acceleration <u>Polarized</u> emission => Large-scale magnetic field

How do black hole jets form ? What is the origin of particle acceleration ?

A (naive) global picture

A (naive) global picture

Magnetized kinetic turbulence, MRI ?

Meringolo+2023

A (naive) global picture

(Asymmetric) magnetic reconnection ?

Shear flows, shocks, Kelvin-Helmholtz, Rayleigh Taylor ?

Lu+2023

Particle-in-cell simulations

Relativistic, ultra-magnetized, collisionless plasmas

(General Relativistic) Radiative Particle-In-Cell simulations: **Plasma flow = discrete charged particles**

Particle-in-cell simulations

Relativistic, ultra-magnetized, collisionless plasmas

(General Relativistic) Radiative Particle-In-Cell simulations: **Plasma flow = discrete charged particles**

Ab-initio modeling of plasmas
 Particle acceleration, radiation, pair creation
 Model observables

Parfrey, Philippov, Cerutti (2019)

Particle-in-cell simulations

Relativistic, ultra-magnetized, collisionless plasmas

(General Relativistic) Radiative Particle-In-Cell simulations: **Plasma flow = discrete charged particles**

- Ab-initio modeling of plasmas
 Particle acceleration, radiation, pair creation
 Model observables
- Computationally expensive
- Short-term evolution, small scale-separation

Parfrey, Philippov, Cerutti (2019)

The particle-in-cell approach in a nutshell

Applications: shocks, reconnection, turbulence, magnetospheres...

General Relativistic Radiative PIC

General Relativity : 3+1 formalism

$$ds^{2} = -\alpha^{2} dt^{2} + \gamma_{ij} (dx^{i} + \beta^{i} dt) (dx^{j} + \beta^{j} dt)$$

 α is the "lapse function" β^i is the "shift vector"

Fiducial observer:
 Locally at rest with respect to space time
 Fixed numerical grid

[Gourgoulhon 2007]

General Relativistic Radiative PIC

General Relativity : 3+1 formalism Radiative transfer : Monte Carlo Full differential cross sections from QED $ds^{2} = -\alpha^{2} dt^{2} + \gamma_{ii} (dx^{i} + \beta^{i} dt) (dx^{j} + \beta^{j} dt)$ $\boldsymbol{\alpha}$ is the "lapse function" **e**+/βⁱ is the "shift vector" 8 work Pair creation Fiducial observer: Locally at rest with respect to space time **Fixed** numerical grid Inverse Compton \mathbf{e}^+ Synchrotron $e^{+/}$ [Gourgoulhon 2007]

Num Exp#1 : Spark gap dynamic and BZ activation

Spark-gap dynamics and pair creation Magnetic field = pure monopole

Gap size determined by the photon mean-free path Low plama multiplicity, i.e., few pairs from primary particles *Crinquand, et al. (2020)*

Blandford-Znajek jet activation

Force-free like state with finite 5-10 % dissipation \rightarrow particle acceleration (gap)

Num Exp#2: Spark gap and ergospheric reconnection

Crinquand et al. (2021)

Paraboloidal configuration (spark gap & reconnection)

Crinquand et al. 2021

Magnetic flux is regulated by reconnection

High efficiencies but weak γ-ray variability

Optically thin radiation = ray-tracing with GeoKerr (*Dexter & Agol 2009*)

- High-radiative efficiency : $\sim 5\%$ L_{BZ} polar-caps, $\sim 40\%$ L_{BZ} current sheet
 - Variability is too weak (~ 50% level) => need for **external forcing**? (e.g., sudden change is the magnetic flux, radiation field)

Crinquand et al. 2021

Num Exp#3: Spark gap and ergospheric reconnection and accretion

Vos et al. submitted

A (2D) MAD-like state is reproduced

Reminiscent of the flaring state in GRMHD simulations

GRRPIC

©Jesse Vos

GRMHD

Dissipation driven by global instabilities (KH, RT)

e+,e-

i+,e-

Dissipation driven by global instabilities (KH, RT)

RT-driven reconnection

=> Particle acceleration ! Quenched due to asymmetries ?

Zhdankin et al. 2024

Dissipation driven by global instabilities (KH, RT)

KH-driven reconnection + shear-flow acceleration

Reconnection : **Injection** mechanism for shear-flow acceleration

Sironi et al. 2021

The scale separation challenge

PIC must resolve plasma kinetic scales (~particle Larmor radius scale R_L) In global PIC models, we must cheat because R_L <<< magnetosphere

Is it valid, does it make sense ?

e.g. M87*-SgrA* $R_{BH}/R_L \sim 10^{10-14}$

e.g. Crab, ms pulsars $R_{\rm LC}/R_{\rm L}{\sim}10^6$

Is PIC always needed ? => Hybrid e.g., MHD+PIC methods, GPU acceleration, sub-grid model ...

Feeling the pull and the pulse of relativistic magnetospheres

1

6-11 Apr 2025 Les Houches (France)

©K. Parfrey

MAIN MENU	Overview
Home	This workshop aims at bringing together world experts in the field of relativistic plasma astrophysics to discuss recent progress in the understanding of magnetized plasmas surrounding neutron stars and black holes and related astrophysical phenomena from an observational, theoretical and computational perspectives.
Program	
Registration	Important dates
Venue and practical information	Conference dates: Sunday April 6, 2025 - Friday April 11, 2025.
List of Participants	Application and abstract submission: September 16, 2024 - December 1, 2024.
News	 Notification to all applicants: December 15, 2024. Registration fee
HELP	The registration fee is fixed to a flat rate of 300 € (taxes included). It will cover all expenses during your stay in Les Houches (meals and accommodation). Payment can be made by credit card, bank transfer or purchase order. A link to
@ Contact	the online payment platform (Azur-Colloque) will be available soon. Confirmed invited speakers
	 Andrei Beloborodov, Columbia University, USA Roger Blandford, Stanford University, USA Arache Djannati-Ataï, APC/CNRS, France Gwenael Giacinti, Tsung-Dao Lee Institute, China Hayk Hakobyan, Columbia University, USA Yuri Lyubarsky, Ben-Gurion University of the Negev, Israel Monika Mościbrodzka, Radboud University, Netherlands Kohta Murase, Penn State, USA

Kohta Murase, Penn State, USA

- Cherry Ng, LPC2E/CNRS, France
- Nanda Rea, CSIC-ICE, Spain
- Bart Ripperda, CITA-University of Toronto, Canada
- Dmitri Uzdensky, University of Oxford, UK
- Alexandra Veledina, University of Turku, Finland
- Yajie Yuan, Washinton Univeristy, USA

Pre-registration & abstract submission : Dec 1 !

SOC:

- B. Cerutti (chair)
- B. Crinquand
- N. Globus
- C. Guépin
- A. Levinson
- K. Parfrey
- A. Philippov

https://r-magnetosphere.sciencesconf.org/

Conclusions

- There is a **urgent need** to better understand the behavior of plasma near black holes (EHT and Gravity observations)
- The **(GR)(R)PIC method** has become a successful tool to explore these processes from first principles.
- The study of black hole magnetospheres show how strongly connected microscopic and system size are connected. **Global simulations needed.**
- **Magnetic reconnection** accelerates particles efficiently and regulates the magnetic flux on the BH horizon
- The **ergospheric current sheet** is a bright source of non-thermal synchrotron radiation (10 % of the jet power)
- ***Caveat* : small scale separation** is a strong limitation of the predictive power of PIC simulations

=> Need for innovative numerical techniques (hybrid, GPU, ...)

Questions & challenges

- Multiscale challenges, how do the kinetic scales feedback on the large scales, and vice-versa?
- What is the connection between the magnetosphere and the accretion flow?
- How much (kinetic) physics do we need? What dissipative processes are at work?
- What is the origin of SgrA* IR-X-ray flares ?
- What is the origin of the jet sheath emission? How to interpret the wide jet base observed in M87*? Gamma-ray flares ?
- Is reconnection in the magnetosphere powerful enough to explain the non-thermal flux near the horizon?
- How are electrons heated in the accretion flow? Role of kinetic turbulence, shear flows, reconnection, shocks?
- How close to a MAD accretion mode observed in GRMHD can be modeled with GRPIC?

Hotspots due to large plasmoid formation

=> Prediction for ngEHT observations