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Heating and particle acceleration in plasmas around black holes

… radiative signatures of 
collisionless plasmas…

… VHE neutrinos from 
proton acceleration in 
BH vicinity (?)…

© EHT Coll. © Ponti+17

… electron acceleration 
at the origin of flares …

… origin of PeV 
protons in the Galactic 
center …© H.E.S.S. Coll.

© Ice Cube Coll.



Kinetic plasma physics in collisionless astrophysical sources: an issue of scale separation

→ radiatively inefficient accretion flows (e.g. SgrA*): 
 
 … a collisionless system (m.f.p. collisions ≫ size of system), out of equilibrium,
 ... two-temperature:  𝑇𝑖 ∼ 1012K ∼ virial,   𝑇𝑒 ∼ 1010K ≪ 𝑇𝑖: why, how? 

→ plasma behavior vs scales:

 … on large scales, plasma ∼ fluid behavior (turbulent e.m. fields ∼ agent of collision),
 [more precisely, near MHD behavior with frozen-in magnetic field, no dissipation]

 … on kinetic scales, non-trivial distribution function + dissipative effects (heating)
 [acceleration: particles extracted from thermal pool, pushed to high energies]

BH gravitational radius

ion skin depth

plasma ion gyroradius

≈

© Athena (P.U.)

→ role of turbulence:

 … in accretion flows, turbulence ~ agent of viscosity → transport of angular momentum 
+ heating through dissipation of turb. energy

 … turbulence sourced by instabilities: e.g. magnetorotational (disk), Kelvin-Helmholtz 
(boundary layers), Rayleigh-Taylor (e.g. flux ejection events), Rossby wave, … 

electron gyroradius



Turbulence in accretion flows: plasma heating with partition of energy

→ radiatively inefficient accretion flows (e.g. SgrA*): 
 
 ... two-temperature:  𝑇𝑖 ∼ 1012K ∼ virial,   𝑇𝑒 ∼ 1010K ≪ 𝑇𝑖: why, how? 
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turbulence driving: instabilities

heating to i

heating to e

turb. cascade

heating at small scales: through Landau 
damping, “stochastic heating” in small-scale 
electrostatic fields, wave-particle 
resonances, reconnection? … debated1 …

⇒ in practice, insert local (=sub-grid) heating recipes in GRMHD simulations to track 𝑇𝑖, 𝑇𝑒  hence radiative output2…
[additional complications: dynamical evolution of turbulence (dynamo), non-local cascade at high-beta…]
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e  scale

Refs: 1. e.g. research of Chandran, Howes, Kunz, Matthaeus, Quataert, Schekochihin, et al  2. e.g. Salas+24 and references 



Turbulence in accretion flows and plasma heating

→ radiatively inefficient accretion flows (e.g. SgrA*): 
 
 ... two-temperature:  𝑇𝑖 ∼ 1012K ∼ virial,   𝑇𝑒 ∼ 1010K ≪ 𝑇𝑖: why, how? 

⇒ a broad field of study: driving of turbulence (instabilities), physics of turbulent cascade, 
physics of heating … with a strong connection to similar studies in the solar wind!  

Workshop: Kinetic Physics of Astrophysical Plasmas, June 18-20, 2025, Jussieu
      (cf A. Vanthieghem, M.L., A. Ciardi)

heating rate i/e vs plasma 𝛽
in magnetosheath
© D. Manzini, PhD thesis, prelim.



→ on large scales: Fermi-type (Fermi 1949, 1954) acceleration  
 
  on MHD scales, Ohm’s law:  𝑬 = −𝒗𝑬 × 𝑩/𝑐 , with 𝒗𝑬 plasma velocity

 
 … shocks, …,   turbulence

 

Astrophysical plasmas as particle accelerators – basic scenarios 

→ particle acceleration: origin of non-thermal populations  high-energy radiation
 … an essential duality: energy  length,  from gyroradius ∝ momentum

→ on small scales:

    reconnection 

 … on kinetic scales or in localized patches: electrostatic gaps (e.g. in BH magnetosphere)
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→ modelling: 
     (1) phenomenology: parametrize acceleration and compute radiative signatures1 …
 
 future: (2) direct implementation in GRMHD simulations2: need sub-grid recipes to 

model acceleration of particles with gyroradius below grid size… track particle 
acceleration in dynamic/unstable regions (disk, jet interface, flux ejection events etc)

 

A long time challenge: modelling particle acceleration across scales in astrophysical sources

BH gravitational radius

≈

electron gyroradius

ion skin depth

GeV electron (flares)

PeV proton

1. conduct kinetic simulations (small length & time scales) to study particle acceleration 
2. derive analytical models, extrapolate to scales of interest, derive sub-grid recipes
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Refs: 1. e.g. Aimar+23 2. e.g. Chael+17



Generalized Fermi acceleration in a random velocity flow

Refs: M.L. 19 [PRD 99, 083006 (2019)], 21 [PRD 104, 063020 (2021)];  see also previous works by Webb 85, 89

→ (covariant) implementation of Fermi acceleration in a non-uniform/random velocity flow 𝒖𝑬:

 … follow particle momentum along particle word line in the (non-inertial) frame where 𝑬 = 0 
moving at (4-velocity) 𝒖𝑬

 … in that frame, energy variation ∝ non-inertial forces ∝ velocity shear of 𝒖𝑬 

… inertial forces:                                            

… main difficulty:  characterize the statistics of 𝜕𝑎𝑢𝐸𝑏 𝒙 𝜏 , 𝜏  along the trajectory 𝒙 𝜏  … scale by scale
 ⇒ dominant contribution from shear of velocity along and across magnetic field line on scales 𝑙 ≳ 𝑟𝐿 
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→ implementation in (strong) turbulence:



→ Theoretical model1:                                 (simplified expression in comoving frame)

 with Γ𝑙 a random field: gradients of 𝒖𝑬 coarse-grained on scale 𝑙 ≳ 𝑟𝐿 …

 ... Γ𝑙 from dynamic curved field lines, or dynamic perp. gradients (mirrors),
 or acceleration of field lines 
 … Γ𝑙 can be >0 or <0: particle undergoes random walk in energy space 

 

Generalized Fermi acceleration in magnetized turbulence

Refs.:  1. ML 21 [PRD 104, 063020 (2021)], ML 22 [PRL 129, 215101 (2022)] 
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Γ𝑙 ∼ Δ𝑢𝐸/𝑙

→ Transport equation:
 … model the probability distribution function of the random force, derive transport equation, integrate in 

time to obtain distribution function 𝑓(𝜖′, 𝜏) of accelerated particles.

Γ𝑙 > 0

Γ𝑙  < 0

Map of ln |Γ𝑙| in MHD 10243 sim.2

(no guide field: large-amplitude turb.) 



→ comparison to numerical data: 
 1. fit model (here 2: blue & red) to p.d.f. of forces (Γ𝑙) 
 2. integrate kinetic equation1 
 3. compare to distribution measured in MHD 10243 simulation2 by time-dependent particle tracking…
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A transport model reproducing spectra obtained by particle tracking in MHD simulation

⇒ model reproduces time- and energy- dependent Green functions… + produces powerlaw spectra 𝑑𝑛/𝑑𝑝 ∝ 𝑝−4

Refs.:  1. ML 22 [PRL 129, 215101 (2022)]  2. no guide field - Eyink+13, JHU database



→ particle acceleration in turbulence, up to feedback1: 
 … acceleration = loss of energy for turbulence + most of energy given to highest energy particles 
 … higher energy particles  larger mean free path  source of viscosity + diffusivity
 
 ⇒ consequences: (1) self-regulation of acceleration impacts distribution function 𝑓 𝜖, 𝑡
    (2) removes turbulent power on short scales, modifies plasma heating rate
    (3) pressure in accelerated particles can become comparable to plasma pressure
 

Evolution on ``long’’ timescales: accelerated particles can modify the turbulence structure…

Refs.: 1. Eichler 79, Eilek 79, … Kakuwa 16 … M.L., Murase, Rieger 24
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→ Ice Cube 22: 4.2σ excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068…
 … a possible scenario: stochastic acceleration of protons to ~30 – 300 TeV in turbulent corona, then 

conversion to neutrinos through hadronic 𝑝 − 𝑝, 𝑝 − 𝛾 interactions1 

Application: origin of high-energy neutrinos from NGC 1068

→ model: integrate spectra through transport eqns, including feedback on turbulence…
 ⇒ inclusion of feedback provides correct normalization of spectrum (for 𝑣𝐴 ≃ 0.2𝑐, ℓ𝑐 ∼ 10 𝑟𝑔)…

 … Ice Cube data suggest that high-energy particles are accelerated up to an energy content ~ gas pressure

Refs.: 1. e.g. Murase 22 + refs.,… Padovani+24  2. ML + Rieger, arXiv:soon
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© Murase+Stecker 22

high-E proton spectrum 
inferred from Ice Cube

predicted proton energy spectrum (units of 𝑝gas)



Summary

→ kinetic plasma physics = an essential ingredient of BH dynamics
 … heating in collisionless environments regulated by turbulence cascade physics
 … particle acceleration to high energies (non-thermal radiation) in reconnecting and/or turbulent regions

→ particle acceleration in magnetized turbulence
 … a covariant generalized Fermi model… (non-resonant interactions prevail over wave-particle resonances)
 … supported by kinetic and MHD simulations

→ perspectives for self-consistent implementation in BH physics
 … strategy: elaborate semi-analytical recipes for sub-grid particles (𝑟𝐿 < Δ𝑥) for GRMHD simulations… 
 … for particles on grid, use PIC module of GRMHD codes 

→ French community in critical need of GRMHD computational physicists (wrt US, Europe…)

 … current faculty:   Fabien Casse (APC), Peggy Varnière (APC) using/developing GR-AMRVAC (+PIC module)

 … outstanding candidates competing for positions…    hire! 
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