

Plasmas around black holes – Dissipation and supra-thermal particles

Martin Lemoine Astroparticule & Cosmologie (APC) CNRS – Université Paris Cité

Collaborators:

Virginia Bresci (Focus Energy), Camilia Demidem (RIKEN), Arno Vanthieghem (Obs. Paris), Laurent Gremillet (CEA, France)

+ G. Pelletier (IPAG), A. Bykov (Ioffe), M. Malkov (UCSD), L. Comisso (Columbia U.), K. Murase (Penn State), F. Rieger (MPIPP), L. Sironi (Columbia U.)

Heating and particle acceleration in plasmas around black holes

... radiative signatures of collisionless plasmas...

 10^{3}

10⁵

Ev [GeV]

10⁴

10⁶

10⁷

... VHE neutrinos from proton acceleration in BH vicinity (?)...

Kinetic plasma physics in collisionless astrophysical sources: an issue of scale separation

 \rightarrow radiatively inefficient accretion flows (e.g. SgrA*):

... a collisionless system (m.f.p. collisions \gg size of system), out of equilibrium, ... two-temperature: $T_i \sim 10^{12}$ K \sim virial, $T_e \sim 10^{10}$ K $\ll T_i$: why, how?

 \rightarrow plasma behavior vs scales:

... on large scales, plasma \sim fluid behavior (turbulent e.m. fields \sim agent of collision), [more precisely, near MHD behavior with frozen-in magnetic field, no dissipation]

... on kinetic scales, non-trivial distribution function + dissipative effects (heating) [acceleration: particles extracted from thermal pool, pushed to high energies]

\rightarrow role of turbulence:

... in accretion flows, turbulence \sim agent of viscosity \rightarrow transport of angular momentum + heating through dissipation of turb. energy

... turbulence sourced by instabilities: e.g. magnetorotational (disk), Kelvin-Helmholtz (boundary layers), Rayleigh-Taylor (e.g. flux ejection events), Rossby wave, ...

BH gravitational radius $r_{\rm g} \sim 10^{12}\,{\rm cm}$

 \approx

plasma ion gyroradius $r_{
m L,i} \sim 10^5 \, {
m cm}$ ion skin depth $d_{
m i} \sim 10^4 \, {
m cm}$ electron gyroradius _

 $r_{
m L,e} \sim 10^2 \, {
m cm}$

Turbulence in accretion flows: plasma heating with partition of energy

 \rightarrow radiatively inefficient accretion flows (e.g. SgrA*):

... two-temperature: $T_i \sim 10^{12}$ K ~ virial, $T_e \sim 10^{10}$ K $\ll T_i$: why, how?

heating at small scales: through Landau damping, "stochastic heating" in small-scale electrostatic fields, wave-particle resonances, reconnection? ... debated¹ ...

 \Rightarrow in practice, insert local (=sub-grid) heating recipes in GRMHD simulations to track T_i , T_e hence radiative output²... [additional complications: dynamical evolution of turbulence (dynamo), non-local cascade at high-beta...]

Refs: 1. e.g. research of Chandran, Howes, Kunz, Matthaeus, Quataert, Schekochihin, et al

2. e.g. Salas+24 and references

Turbulence in accretion flows and plasma heating

 \rightarrow radiatively inefficient accretion flows (e.g. SgrA*):

... two-temperature: $T_i \sim 10^{12}$ K ~ virial, $T_e \sim 10^{10}$ K $\ll T_i$: why, how?

⇒ a broad field of study: driving of turbulence (instabilities), physics of turbulent cascade, physics of heating ... with a strong connection to similar studies in the solar wind!

<u>Workshop</u>: Kinetic Physics of Astrophysical Plasmas, June 18-20, 2025, Jussieu (cf A. Vanthieghem, M.L., A. Ciardi)

Astrophysical plasmas as particle accelerators – basic scenarios

 \rightarrow particle acceleration: origin of non-thermal populations \leftrightarrow high-energy radiation ... an essential duality: energy \leftrightarrow length, from gyroradius \propto momentum

 \rightarrow on large scales: Fermi-type (Fermi 1949, 1954) acceleration

 \leftrightarrow on MHD scales, Ohm's law: $E = -v_E \times B/c$, with v_E plasma velocity

E

B

 \rightarrow on small scales:

... shocks, ..., turbulence

reconnection

... on kinetic scales or in localized patches: electrostatic gaps (e.g. in BH magnetosphere)

thermal component

A long time challenge: modelling particle acceleration across scales in astrophysical sources

\rightarrow modelling:

(1) phenomenology: parametrize acceleration and compute radiative signatures¹ ...

future: (2) direct implementation in GRMHD simulations²: need sub-grid recipes to model acceleration of particles with gyroradius below grid size... track particle acceleration in dynamic/unstable regions (disk, jet interface, flux ejection events etc)

- 1. conduct kinetic simulations (small length & time scales) to study particle acceleration
- 2. derive analytical models, extrapolate to scales of interest, derive sub-grid recipes

Generalized Fermi acceleration in a random velocity flow

 \rightarrow (covariant) implementation of Fermi acceleration in a non-uniform/random velocity flow u_E :

... follow particle momentum along particle word line in the (non-inertial) frame where E = 0moving at (4-velocity) u_E ... in that frame, energy variation \propto non-inertial forces \propto velocity shear of u_E

 $\frac{\mathrm{d}\epsilon'}{\mathrm{d}\tau} = -\Gamma_{a\,b}^0 \frac{{p'}^a {p'}^b}{m} \qquad \qquad \text{... inertial forces:} \quad \Gamma_{a\,b}^0 \propto \partial_a u_{Eb}$

... main difficulty: characterize the statistics of $\partial_a u_{Eb}[x(\tau), \tau]$ along the trajectory $x(\tau)$... scale by scale \Rightarrow dominant contribution from shear of velocity along and across magnetic field line on scales $l \gtrsim r_L$

Generalized Fermi acceleration in magnetized turbulence

 \rightarrow Theoretical model¹: $\dot{\epsilon}' = \Gamma_l \epsilon'$ (simplified expression in comoving frame)

with Γ_l a random field: gradients of \boldsymbol{u}_E coarse-grained on scale $l \gtrsim r_L$...

... Γ_l from dynamic curved field lines, or dynamic perp. gradients (mirrors), or acceleration of field lines

... Γ_l can be >0 or <0: particle undergoes random walk in energy space

 \rightarrow Transport equation:

... model the probability distribution function of the random force, derive transport equation, integrate in time to obtain distribution function $f(\epsilon', \tau)$ of accelerated particles.

Map of $\ln |\Gamma_l|$ in MHD 1024³ sim.² (no guide field: large-amplitude turb.)

A transport model reproducing spectra obtained by particle tracking in MHD simulation

\rightarrow comparison to numerical data:

- 1. fit model (here 2: blue & red) to p.d.f. of forces (Γ_l)
- 2. integrate kinetic equation¹
- 3. compare to distribution measured in MHD 1024³ simulation² by time-dependent particle tracking...

 \Rightarrow model reproduces time- and energy- dependent Green functions... + produces powerlaw spectra $dn/dp \propto p^{-4}$

Refs.: 1. ML 22 [PRL 129, 215101 (2022)]

2. no guide field - Eyink+13, JHU database

Evolution on ``long" timescales: accelerated particles can modify the turbulence structure...

 \rightarrow particle acceleration in turbulence, up to feedback¹:

Refs.:

- ... acceleration = loss of energy for turbulence + most of energy given to highest energy particles
- ... higher energy particles \leftrightarrow larger mean free path \leftrightarrow source of viscosity + diffusivity
- ⇒ consequences: (1) self-regulation of acceleration impacts distribution function $f(\epsilon, t)$ (2) removes turbulent power on short scales, modifies plasma heating rate (3) pressure in accelerated particles can become comparable to plasma pressure

Application: origin of high-energy neutrinos from NGC 1068

 \rightarrow Ice Cube 22: 4.2 σ excess of high-energy (1-10 TeV) neutrinos from nearby AGN NGC 1068...

... a possible scenario: stochastic acceleration of protons to $\sim 30 - 300$ TeV in turbulent corona, then conversion to neutrinos through hadronic p - p, $p - \gamma$ interactions¹

→ model: integrate spectra through transport eqns, including feedback on turbulence...

 \Rightarrow inclusion of feedback provides correct normalization of spectrum (for $v_A \simeq 0.2c$, $\ell_c \sim 10 r_g$)...

... Ice Cube data suggest that high-energy particles are accelerated up to an energy content \sim gas pressure

Refs.: 1. e.g. Murase 22 + refs.,... Padovani+24

2. ML + Rieger, arXiv:soon

Summary

- → kinetic plasma physics = an essential ingredient of BH dynamics
 - ... heating in collisionless environments regulated by turbulence cascade physics
 - ... particle acceleration to high energies (non-thermal radiation) in reconnecting and/or turbulent regions
- \rightarrow particle acceleration in magnetized turbulence
 - ... a covariant generalized Fermi model... (non-resonant interactions prevail over wave-particle resonances)
 - ... supported by kinetic and MHD simulations

\rightarrow perspectives for self-consistent implementation in BH physics

- ... strategy: elaborate semi-analytical recipes for sub-grid particles ($r_L < \Delta x$) for GRMHD simulations...
- ... for particles on grid, use PIC module of GRMHD codes

→ French community in critical need of GRMHD computational physicists (wrt US, Europe...)

- ... current faculty: Fabien Casse (APC), Peggy Varnière (APC) using/developing GR-AMRVAC (+PIC module)
- ... outstanding candidates competing for positions... hire!