Testing the presence of a fifth force at the **Galactic Center**

Arianna Foschi - GRAVITY+ workshop - 19 November 2024

LESIA Dobservatoire PSL

Overview and motivation

+

IR modification (cosmological scales)

General Relativity

+

 Ω_{Λ}

ecrest Visible Stor 0.0 Alpha Tauri (Aldebaran) 0.025m

 M_{\odot}

Negative of the 1919 solar eclipse taken from the report of Sir Arthur Eddington. Eddington highlighted the stars he used in the comparison with horizontal marks; these can be seen at 2 o'clock on the image.

Higher derivatives (i.e. GR modifications)

UV completion (e.g. string theory)

M

 $M_{\rm PL}$

The zoo of Extended Theories of Gravity

Current constraints on $|\alpha|$

Current constraints on $|\alpha|$ for $\lambda > 1$ cm

$$(1 + |\alpha|e^{-r/\lambda})$$

Figure from Hees et al. 2017 (arXiv: 1705.07902)

Yukawa-like correction: behavior of the acceleration

GM r $\lambda = 50 \text{ M}$ 10² 10^{1} 10⁰ 10^{-2} Dark matter Dark energy 10^{-3} 10^{-4}

20

40

$$(1 + |\alpha|e^{-r/\lambda})$$

Yukawa att. ($\alpha = 1$)

Newton

Yukawa rep. ($\alpha = -1$)

$\alpha > 0$: force mediated by massive **scalars**

$\alpha < 0$: force mediated by massive vectors

(Moffat 2016)

Available Data for S2

•Astrometry

- NACO & SHARP from 1992 to 2019 $(\sigma \sim 0.5 \text{ mas});$
- **GRAVITY** data from 2016 to 2022 $(\sigma \sim 50 \,\mu as).$

• Spectroscopy

(Radial velocity measurements)

• **SINFONI** data from 2000 to 2022 $(\sigma \sim 10 - 20 \, \text{km/s}).$

Dataset

Figure from GRAVITY Coll. et al. 2020

Corrections to the Keplerian model in the fit

(GRAVITY Coll. 2018, Alexander 2005)

• Newtonian effect: the Roemer delay due to finite value of C.

1st Post Newtonian (PN) correction

Schwarzschild precession has been detected on S2 motion at 10σ confidence level (GRAVITY Coll. 2024)

$$a_{1\text{PN}} = f_{\text{SP}} \frac{GM_{\bullet}}{c^2 r^2} \left[\left(\frac{4GM_{\bullet}}{r} - v^2 \right) \frac{r}{r} + 4\dot{r}v \right] \quad \text{with } f_{\text{SP}} = 1$$
$$\left(\beta = \gamma = 1 \right)$$

Posterior distributions of $|\alpha|$ for fixed λ

Posterior distributions of $|\alpha|$ for fixed λ

 $\lambda < r_{s2} \qquad r_{s2} \sim (10^{13} - 10^{14}) \text{ m}$ $U = -\frac{GM}{r} \left(1 + |\alpha| x^{-r/\lambda}\right)$ $\approx -\frac{GM}{r}$

Posterior distributions of $|\alpha|$ for fixed λ

$\lambda = 10^{13} \, {\rm m}$

Posterior distributions of $|\alpha|$ for fixed λ

$\lambda = 10^{13} \, {\rm m}$

Posterior distributions of $|\alpha|$ for fixed λ

$\lambda = 10^{17} \, {\rm m}$

 $|\alpha| \leq 0.075$ at 95 % confidence level $M_{\bullet} = (4.29 \pm 0.01) \cdot 10^6 M_{\odot}$

- Investigated the presence of a fifth force at the GC via the introduction of a Yukawalike potential in S2 equations of motion;
- For the first time we used GRAVITY data and included the 1st PN correction;
- Found **no constraints** on $|\alpha|$ for $\lambda < 10^{13}$ m;
- Much stringent constraints for $10^{13} \le \lambda \le 10^{14}$ m, $|\alpha| \le 10^{-3}$ at 95% confidence level;
- Good constraints for $\lambda \ge 10^{15}$ m, $|\alpha| \le 10^{-1}$ at 95% confidence level (still to fully understand why).

Thank you for your attention!

Conclusions

