Top, Single Top et la Recherche de Nouvelle Physique au LHC

Séminaire CPPM – 19.01.09

Julien Donini, LPSC Grenoble

Le Quark Top

Les particules élementaires

Un 6^{ème} quark aux propriétés uniques

- Masse ~ 172 GeV
- Spin=1/2
- Charge=+2/3
- Durée de vie 5.10⁻²⁵ s << Λ⁻¹ QCD
- → Le top se désintègre avant hadronisation
- BR(t > Wb) ~ 100% (MS)

Sensible à la physique audelà du modèle standard

Tour d'Horizon

La physique du quark top

- 30 ans d'histoire
- Propriétés du quark top
- Recherche d'une physique au-delà du modèle standard
- Le top au LHC: un outil précieux
 - Détermination des échelles d'énergie
 - Efficacité étiquetage des quarks b
- La production du top isolé
 - Le single top: fenêtre vers la nouvelle physique
 - Recherche du single top dans ATLAS

1974: deux familles de leptons et de quarks

$$\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_\mu \\ \mu \end{pmatrix} \qquad \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix}$$

- 1975: découverte du lepton τ à SLAC
 - → Première particule d'une 3ème génération
- 1977: découverte du méson (bb) au Fermilab
 - → Un 5ème quark: le b
 - → Fait-il partie d'un doublet d'isospin ?

- 1984: DESY (JADE): collisions $e^+e^- \to bb \to \mu^\pm + X$
 - Mesure asymétrie de charge avant-arrière A_{FB}
 - $A_{FB} = 22.5 \pm 6.5 \%$
 - MS: isodoublet 25.2%, isosinglet: 0%!
 - → Isodoublet: il doit y avoir un quark top!

- Recherche du top dans les collisionneurs e⁺e⁻
 - Recherche du toponium (résonnance t-tbar)
 - 1970'-80': PETRA, TRISTAN: $e^+e^- \rightarrow \gamma^* \rightarrow tt$
 - 1989-95: LEP/SLC: e+e-→ Z → tt
 - → Limite masse top m_t > 45 GeV
 - Recherches électrofaibles indirectes
 - Fit observables du Z (m_Z, Γ_Z, A_{FB}…)
 - → 150 < m_t <170 GeV

- Collisionneurs p-pbar
 - 1984-90: UA1 et UA2: $p\overline{p} \rightarrow W \rightarrow tb$
 - 1988-1994: Tevatron: $pp \rightarrow t\bar{t} \rightarrow W^*bW^*b$
 - Signature: lepton+jets
 - Reconstruction masse tranverse W
 - t→W*b, avec W off-shell (m_t<m_W)
 - Pas de signal observé ...
 - → masse top > m_w
 - stratégie de recherche différente

- 1995: recherches au Tevatron
 - Collisions pp à 1.8 TeV, deux expériences CDF et DØ
 - m_t > m_W: quark top est recherché dans la production par paires
 - $p\overline{p} \rightarrow tt \rightarrow WbWb$ avec un W $\rightarrow lv$ et W $\rightarrow qq'$
 - Fond W+jets important

→ Découverte!

Tevatron	m_{t}
DØ	199 ± 30 GeV
CDF	176 ± 13 GeV

Le top est lourd! $m_t \sim 40 \times m_b!$

- 2009+: Le LHC
 - Collisions pp à 14 TeV
 - 1 fb⁻¹ \rightarrow 83.10⁴ ev. ttbar
 - fond dijets QCD, W+jets, singletop, fond combinatoire
 - Signal clairement observable

Processus	σ(nb)
total pp	79 10 ⁶
dijet (p _t >25 GeV)	4.8 10 ⁵
W→Iv	20.5
Z→II	2.02
ttbar	0.833

- Section efficace de production: approche théorique
 - Théorème de factorisation

$$\sigma(\hat{s}, m_t^2) = \sum_{i,j} \int dx_i dx_j f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2) \cdot \sigma_{ij}(ij \to t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$

section efficace pp→tt

- s: ECM
- m_t:masse top

Somme sur les paires de partons (i,j) contribuant au processus

Intéraction longue distance

- Fonction densité partonique $f_i(x_i, \mu_f^2)$
- x_i: fraction d'impulsion longitudinale du parton i
- μ_f: échelle de factorisation, sépare processus 'dur' et 'mou'

Tipiquement μ_f et μ_R sont fixées à m_f

Intéraction courte distance

- processus dur, grand moment transverse
- •μ_R: échelle de renormalisation, absorbe divergences UV

13

- Section efficace de production: approche théorique
 - Théorème de factorisation

$$\sigma(\hat{s}, m_t^2) = \sum_{i,j} \int dx_i dx_j f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2) \cdot \sigma_{ij}(ij \to t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$

Intéraction courte distance entre les partons i et j

- calculs QCD perturbatif
- modes de production dominants (LO)

- Section efficace de production: approche théorique
 - Théorème de factorisation

$$\sigma(\hat{s}, m_t^2) = \sum_{i,j} \int dx_i dx_j f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2) \cdot \sigma_{ij}(ij \to t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$

Intéraction courte distance entre les partons i et j

corrections radiatives d'ordre supérieur (NLO)

- Section efficace de production: approche théorique
 - Théorème de factorisation

$$\sigma(\hat{s}, m_t^2) = \sum_{i,j} \int dx_i dx_j \frac{f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2)}{f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2)} \cdot \sigma_{ij}(ij \to t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$

Intéraction longue distance

- f_i(x_i,μ_f²) extrait de fits globaux sur des données ep (Zeus, H1)
- Distribution de probabilité en fonction de la fraction d'impulsion x_i portée par le parton

- Section efficace de production: approche théorique
 - Théorème de factorisation

$$\sigma(\hat{s}, m_t^2) = \sum_{i,j} \int dx_i dx_j \frac{f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2)}{f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2)} \cdot \sigma_{ij}(ij \to t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$

Production au seuil $x_i \approx 2m_t/\sqrt{s}$

• **LHC**: $\sqrt{s} = 14 \text{ TeV} \rightarrow x_i \approx 0.025$ → qq (10%) et gg (90%)

•**TeVatron** : \sqrt{s} = 1.96 TeV $\rightarrow x_i \approx 0.175$

→ qq (85%) et gg (15%)

Désintégration du Quark Top

Modes de désintégration

- Durée de vie très courte
 - $\tau_{top} \sim 4 \times 10^{-25} \text{ s} < \tau_{had} \sim 28 \times 10^{-25} \text{ s}$
 - Le top se désintègre avant hadronisation
- BR(t→Wb) ~ 100% dans le modèle standard

Modes de désintégration des paires ttbar

En fonction de la désintégration du W

→ Canal dilepton: 12%

→ Canal lepton+jets: 44%

→ Canal hadronique: 44%

<u>c</u> s	electron+jets	muon+jets	jets	all-hadronic	
ūď	electro	muon	tan+	all-Hauforito	
12	ет	μτ	ĞŢ.	tau+jets	
<u>'</u>	oht	epio	μτ	muon+jets	
o'	9	еµ	et	electron+jets	
Necat	e ⁺	μ+	τ	ud cs	

Physique du Top

Mesure des propriétés du quark top et tests du modèle standard

Physique du Top

Tests du modèle standard et recherche de nouvelle physique

→ quark 4ème génération, bosons de jauge supplémentaires, nouveaux bosons

Recherche du boson de Higgs chargé

Boson H[±]

- Prédit dans nombreux modèles de Higgs non minimaux (2HDM,...)
- Découverte → signe de nouvelle physique

MSSM

- $m_H < m_{top}$: $t \rightarrow H^+b$; $H^+ \rightarrow \tau v$ (mode dominant)
- $m_H > m_{top}$: $gb \rightarrow tH^+$; $H^+ \rightarrow tb$ (mode dominant)

$$\tan \beta = \langle H_U \rangle / \langle H_D \rangle$$

Recherche du boson de Higgs chargé

Un exemple au Tevatron

- Recherche H[±] léger dans la production de paires ttbar
- $t \rightarrow H^+b; H^+ \rightarrow cs$
- Reconstruction masse inv. dijet dans les ev. lepton+jets

Recherche du boson de Higgs chargé

Un exemple du LHC

- Higgs chargé léger (ATLAS)
- Recherche H⁺ $\rightarrow \tau v$
 - $tt \rightarrow bH^+bW^- \rightarrow b\tau(had/lep)\nu bqq$
 - $tt \rightarrow bH^+bW^- \rightarrow b\tau(had)\nu bl\nu$

 $tt \rightarrow bH^+bW^- \rightarrow b\tau(had)vbqq$

Le Top comme Outil de Calibration au LHC

Échelle d'énergie des jets

Reconstruction des jets

- Dépôt calorimétriques, traces
- Algorithmes: cône, K_t, etc
- Corrections énergétiques

→ Échelle d'énergie des jets (JES)

- Reconstruction de l'énergie du parton initial (quark, gluon)
- Essentiel pour étude du top,
 QCD, recherche Higgs ...
- Incertitude sur la JES dominante sur mesures masse, sec. eff...

Échelle d'énergie des jets

- Corrections des jets dans ATLAS
 - Corrections MC et obtenues à partir des données

Mesure de la JES avec le Top

- Détermination de la JES in-situ avec W→jj
 - Abondance paires ttbar: étalonnage des jets avec W hadronique
 - Sélection: lepton isolé, ≥4 jets, 2 b-tags, large ME_t: pureté 65-80%
 - 1 fb⁻¹: qques milliers paires W→jj
- Méthodes
 - Corrections Itérative

$$\begin{split} E^{corr} &= K\left(E\right)E \\ M_{W}^{PDG} &= \sqrt{K\left(E_{1}\right)K\left(E_{2}\right)}M_{ii} \end{split}$$

- Templates
 - Templates masse dijet
 - 2 paramètres libres:
 - → échelle d'énergie et résolution
 - Fit des données
- → Précision ~2% avec 50 pb⁻¹ (objectif 1% avec 1 fb⁻¹)

Échelle d'énergie des b-jets (b-JES)

Propriétés des b-jets

- massif m_B ~ 5 GeV
- Fragmentation dure x_B~70%
- Désintégration semi-leptonique
 - ~40% → lepton (e/mu)
- Longue durée de vie
 - cτ ~ 470 μm [pdg]
 - Pour E_B ~ 50 Gev, ct ~ 5mm

- Incertitude sur E(b-jets) → err. syst. importante en physique du top
- Correction spécifiques aux b-jets: reconstruction E(b-quark)
- Comparaison données/MC
 - Incertitude sur les propriétés des b-jets → incertitude sur le MC

b-JES au Tevatron

- Mesures de masse du top
 - Incertitude sur l'énergie des b-jets (BR semi-leptonique, fragmentation, réponse calo.) → erreur systématique
- Mesure b-JES dans le processus Z→bb (CDF)
 - Extraction signal Z→bb du fond dijet QCD
 - Comparaison data/MC → b-JES
 - Trigger spécifique
 - Fond QCD estimé à partir des données
 - Fit likelihood non-binné
 - → Mesure simultanée signal et b-JES
 - → Précision b-JES ~ 2% avec 0.6 fb⁻¹

J. Donini et al., NIM A 596 (2008)

b-JES dans ATLAS

Corrections b-jets semi-muoniques

- Méthode purement MC,
- Paramétrizée en fonction P_t muon
- doit être validée sur les données
- Méthode de b-jet 'balancing'
 - γ+bb
 - Z+(b)jets
 - S/B raisonnable, travail préliminaire
- ttbar → l+jets
 - Extraction b-JES à partir de m_{top}
 - $M_{ij} \rightarrow m_W[pdg], M_{ijb} \rightarrow m_{top}[Tevatron]$
 - Précision ~ 3% avec 100 pb⁻¹
 - Autres méthodes en développement
 - Mesure simultanée b-JES et m_{top}
 - Fit cinématique de l'ev. ttbar→ l+jets

$$m_{top}[Tev.] = 172.4 \pm 1.2 \text{ GeV}$$

Étiquetage des b dans ATLAS

Algorithmes basés sur le paramètre d'impact

- $d_0 \rightarrow likelihood$ (b vs uds) pour chaque trace
 - poids total pour chaque jet
 - Algorithmes 2D et 3D
- Jet probability

Vertex secondaire

- Fit VS à partir des traces à gd d₀
- likelihood à partir des variables du VS
 - Masse vertex, fraction d'énergie, N_{2-traces} vertex
- Meilleur résultats si combiné avec alg. IP

Soft lepton

- Désintégration s-l
- Limité par BR

 d_0 = paramètre d'impact

Mesure Efficacité de b-tagging avec le Top

- Commissioning des algorithmes
 - Mesure efficacité b-tagging sur les données
- Méthode de comptage
 - Sélection d'év. ttbar dans le canal lepton+jets
 - lepton (p_T>20 GeV), missing-E_T>20 GeV, 4 jets E_T>30 GeV
 - Comptage des jets étiquetés b
 - Fit pour mesurer $ε_b$, $ε_c$ et $σ_{tt}$ ($ε_{uds}$ est supposé connu)
 - Méthode similaire avec ev. dileptons (ee/μμ/eμ)
 - → résolution to ±3%(stat) ±3%(syst) à 200 pb⁻¹

Mesure Efficacité de b-tagging avec le Top

Méthode cinématique

- Exploite cinématique/topologie ev. ttbar semi-leptoniques
- b-tag + 2jets légers: top hadronique
- Test ε_b jet coté leptonique
- combinaisons correctes: 3 méthodes
 - Sél. topologique: masse m_{top} reconstruite
 - Likelihood: jet/lepton P₁ et angles
 - Cinématique: χ^2 de chaque combinaison
- Pureté échantillons 70-90% ttbar
- Estimation fond dans les données
- Efficacité en fonction de jet E_T, η
- → Précision ±3-14%(syst) ±5%(stat) (200pb⁻¹)

Single Top: fenêtre vers la Nouvelle Physique

Single Top

Le top isolé

- Production d'un seul quark top par intéraction faible
- 3 modes de production

voie t (fusion W-g)

voie s (W*)

voie Wt (Prod. Associée)

Processus	Tev.	LHC	
t-tbar	7	833	
voie t	2	246	X
voie s	0.9	11	X
voie Wt	0.1	66	X

x120 au LHC

x12

x 660 → observable au LHC

Le Single Top au Tevatron

Défis expérimental

- Fond W+jets très important
- → Techniques multi-variables

→ Evidence d'un signal Single top au Tevatron mais pas encore d'observation

CDF and DØ tb+tqb Cross Section

Le Single Top au LHC?

- Fenêtre vers la nouvelle physique
 - Production: interaction faible
 - Section efficace directement proportionnelle à |v_{tb}|²
 - → Sensible à toute nouvelle particule pouvant modifier le couplage faible du top

→ Quarks supplémentaires 4ème génération

→ Nouveaux bosons

- **→** Couplages modifiés
- **→**Polarisation anormale

Le Single Top au LHC?

Fenêtre vers la nouvelle physique

- Production: interaction faible
- Section efficace directement proportionnelle à |v_{tb}|²
- → Sensible à toute nouvelle particule pouvant modifier le couplage faible du top

voie s

- W' (GUT, extra-dim)
- H[±] MSSM
- Techni-pion

Le Single Top et la Nouvelle Physique

- Fenêtre vers la nouvelle physique
 - Mesure section efficace des différents processus de production single top → contraintes sur la nouvelle physique
 - Précision cruciale !

Mesures σ_{single-top} dans ATLAS

Mesure de section efficace

- Pour les 3 voies de production du single top
- Techniques simples: coupures séquentielles
 - ... et avec des outils plus sophistiqués: MVA
- Perspectives pour 1-10 fb⁻¹
- Erreur systématiques réalistes
 - Incertitudes systématiques attendues (JES, b-tag ...)
 - Sections efficaces théoriques
 - Simulation complète du détecteur ATLAS
- Références
 - CERN-OPEN-2008-020 (ATLAS collaboration)
 - ATL-PHYS-INT-2008-041 (J. Donini, B.Clement, A.Lucotte, A.Shibata, N. Triplett)

Signatures Single Top

Signature: 1 b-jet central à grand p_t, W leptonique, 1-2 extra jets

Voie t: fusion Wg (σ_{NLO} = 246 ± 12 pb)

- 1 ou 2 jets vers l'avant (b-jet surtout)
- W leptonique: 1 lepton (e, μ) à grand p_T + E_T manquante

Voie s: W* $(\sigma_{NLO} = 11 \pm 1 \text{ pb})$

- 1 deuxième b-jet central
- W leptonique: 1 lepton (e, μ) à grand p_T + E_T manquante

Production associée Wt $(\sigma_{NLO} = 66 \pm 2 \text{ pb})$

- 1 deuxième boson W
- canal lepton + jet: 2 jets,1 lepton, E_T manquante
- canal di-lepton : 2 leptons, E_T manquante, 0 extra jet
 - (non traité ici)

Générateurs MC utilisés : AcerMC + Pythia (MC@NLO+Herwig)

Fond Physiques Principaux

Paires top ($\sigma \approx 800$ pb) \rightarrow Fond dominant

- peut-être réduit avec 1 b-tag veto ou une coupure sur le jet avant
- générateurs: MC@NLO+Herwig (NLO),

AcerMC + Pythia (ISR/FSR)

W+jets

W+jets légers (σ≈O(100) nb)

W+bb+jets ($\sigma \approx O(0.1)$ nb)

- coupure élevée sur b-jet pt aide à réduire ce fond
- **générateurs**: Alpgen + Pythia (+K fact)

Événements Multi-jets avec un lepton mal-identifié

- coupure triangulaire ME_T vs $\Delta \phi$ (Lepton, ME_T) permet de réduire ce fond
- générateur: Pythia dijet

Sélection des Evénements

- présélection commune
 - Sélection t→Wb→lvb
 - Réduction fond multijets et W+jets

+ sélection spécifique à chaque analyse

Événements Sélectionnés: 1fb⁻¹

Processus	Voie t	Voie s	Voie Wt
Selection	 b-jet: p_T>50 GeV jet léger η >2.5 	 2ème b-jet p_T>30 GeV Veto extra jet p_T>15 GeV Coupures: H_T(jets), ΔR(b1,b2), p_T(lep) 	 b-jet p_T>50 GeV Veto extra b-jet, Coupure masse du W hadronique
Signal	1460	24.8	639
Autres ST	148	39.5	1418
Ttbar	2816	145.1	3022
W+jets	942	66.4	3384
Fond total	3906	251	7824
S/B	0.37	0.1	0.08
S/√B	23.4	1.6	7.2

Significance élevée pour les voies t et Wt. Mais pas de systèmatiques!

Analyse Multi-variables

- Amélioration de la séparation du signal
 - Combinaison de plusieurs variables (faiblement) discriminantes
 - Méthodes multi-variables en général très efficaces
 - ... mais nécessitent validation avec les données réelles
- Rapport de vraisemblance S/(S+B): voie s

$$L = \prod_{\text{Signal}} (x_i) / (\prod_{\text{P}_{\text{Signal}}} (x_i) + \prod_{\text{P}_{\text{Background}}} (x_i))$$

Arbre de décision boostés (BDT): voies t et Wt

Arbre de décision : à chaque nœud → variable et coupure qui donnent la meilleure séparation 'Boosting': moyenne de plusieurs arbres, poids.

Analyse Multi-variables

- Pour chaque analyse définition de plusieurs variable discriminantes
 - 1 discriminant par fond principal
 - Différents ensembles de variables pour chaque discriminant
 - Séparation en canaux multiples (électron/muon, multiplicité jet)
 - Coupure discriminant: minimisation erreur totale sur σ_{signal}
- Incertitude sur la section efficace

$$L(\sigma) = \prod_{\text{channel i}}^{N} \frac{e^{-(B_i + \alpha_i L_i \sigma)} \cdot (B_i + \alpha_i L_i \sigma)^{D_i}}{D_i!}$$

```
    - B<sub>i</sub>: # év. de fond
    - α<sub>i</sub>: acceptance signal
    - L: luminosité integrée
    - D<sub>i</sub>: données = B<sub>i</sub>+ α<sub>i</sub> L σ<sub>th</sub>
    - σ: section efficace
```

Pseudo-expériences: génération données D (Poisson), shift B_i, α_i,
 L avec toutes les sources d'erreurs systématiques

Analyse voie t

Sélections

- 1 b-jet p_T>50 GeV
- 1 jet léger $|\eta|$ >2.5 (analyse séquentielle seulement)

1 discriminant (BDT) vs paires de top

Source	δσ/σ (seq.)	δσ/σ (BDT)
Erreur stat.	5.0%	5.7%
Stat. MC	6.5%	7.9%
Luminosité	18.3%	8.8%
Efficacité B-tag	18.1%	6.6%
Échelle d'énergie	21.6%	9.9%
Lepton ID, trigger	2.3%	1.8%
Théorie (σ_{th} , PDF, ISR/FSR)	28.1%	13.5%
Total 1(10) fb ⁻¹	45% (22%)	22% (10%)

Analyse voie s

Sélections

- 2 b-jets p_T>30 GeV
- Veto extra jet p_T>15 GeV

5 fonctions de vraisemblance

- vs tt \rightarrow l+jets, tt \rightarrow ll, tt \rightarrow l+ $\tau/\tau\tau$
- vs W→I+jets, ST voie t

S~15, S/B~20% (1fb⁻¹)

Source	δσ/σ Likelihood
Erreur stat.	64%
Stat. MC	29%
Luminosité	31%
Efficacité b-tag	44%
Échelle d'énergie	25%
Lepton ID, trigger	6%
Théorie (σ_{th} , PDF, ISR/FSR)	74%
Total 1(10) fb ⁻¹	95% (48%)

Voie Wt

Sélections

- b-jet p_T>50 GeV
- Veto extra b-jet

12 Boosted Decision Trees

- vs tt→l+jets, tt→dilepton,
 W→l+jets, voie t
- BDT: 2/3/4 multiplicité de jets

S~80, S/B~40% (1fb-1)

Source	δσ/σ BDT	
Erreur stat.	20.6%	
Stat. MC	15.6%	
Luminosité	20%	
Efficacité b-tag	16%	
Échelle d'énergie	11%	
Lepton ID, trigger	3.2%	
Theorie (σ_{th} , PDF, ISR/FSR)	35%	
Total 1(10) fb ⁻¹	48%(19%)	

Améliorations et Perspectives

Voie t

- BDT vs W+jets, ttbar (I+jets, II):
 - Multiplicité: 2/3/4 jets →12 discriminants
- Résultat plus stable
 - pas de coupure en queue de distributions
- S/B ~1.6, $\delta \sigma / \sigma = 19\%$

Multiplicité: 2 jets

Améliorations et Perspectives

- Combinaison des canaux t/s/Wt
 - Mesure simultanée des trois canaux
 - Généralisation à 3D du fit de vraisemblance

Conclusion

Le quark top au LHC

- Produit en abondance
- → Sensibilité nouvelle physique
- → Outil de calibration

Le cas du single top (ATLAS)

- Voie t: observation possible avec 1 fb⁻¹
- Observation voie Wt avec ~10 fb⁻¹
- Voie s plus difficile: > 30 fb⁻¹

Perspectives pour le top au LHC

- 1ère année: redécouverte du top, (b)-JES, b-tagging, validation MC/données
- 2^{ème} année: méthodes multi-variables, observation single top voie t, étude des propriétés du top, test modèle standard
- 3ème année: sensibilité nouvelle physique

BACKUP

Fits Electrofaibles

Contraintes sur le Boson de Higgs

Mixing des Quarks

In the Standard Model, also the down-type quarks mix. Relevant part of Lagrangian with W_{μ}^{\pm} - quark interactions reads:

$$\mathcal{L}|_{W^{\pm}-\text{quark}}(x) = gW_{\mu}^{-}(x) \sum_{\substack{\alpha=u,c,t\\i=d,s,b}} V_{\alpha i} \left(\bar{\alpha}(x)\gamma^{\mu}i(x)\right) + c.c.$$

Quark mixing $\propto V_{ai}$

Interactions mix the down-type quarks via the Cabbibo-Kobayashi-Maskawa quark mixing matrix V.

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Thus a top quark can emit a W-boson and become either a b $(\propto V_{tb})$, a s $(\propto V_{ts})$, a s $(\propto V_{td})$. We know now

Section efficace ttbar (CDF)

Propriétés du Quark Top

Largeur

 Γ_{top} < 12.7 GeV à 95%CL (theorie Γ_{top} = 1.5 GeV)

Charge

Q=-4/3 exclu à 87% CL

Production Résonnante et Z'

Quarks de 4^{ème} Génération

Recherche de quark top massif de 4ème génération: t'

• même signature que le top

M₊ > 311 GeV à 95% CL

Le Détecteur ATLAS au LHC

Les Sous-détecteurs d'ATLAS

Detector component	Required resolution	η coverage	
		Measurement	Trigger
Tracking	$\sigma_{p_T}/p_T=0.05\%\ p_T\oplus 1\%$	± 2.5	
EM calorimetry	$\sigma_E/E=10\%/\sqrt{E}\oplus 0.7\%$	± 3.2	±2.5
Hadronic calorimetry (jets)			
barrel and end-cap	$\sigma_E/E = 50\%/\sqrt{E} \oplus 3\%$	± 3.2	± 3.2
forward	$\sigma_E/E = 100\%/\sqrt{E} \oplus 10\%$	$3.1 < \eta < 4.9$	$3.1 < \eta < 4.9$
Muon spectrometer	σ_{p_T}/p_T =10% at p_T = 1 TeV	±2.7	±2.4

Reconstruction des Jets dans ATLAS

Jet clustering

- Tours calorimètre
- Cluster topologiques
 - Cluster 3D

Algorithmes de jet

- Cône $\Delta R = \sqrt{(\Delta \Phi^2 + \Delta \eta^2)} < R_{cone} (0.4, 0.7)$
 - Tevatron
 - Pb théoriques (infrarouge, colinéarité)
- K_T (R=0.4, 0.6)
 - Recombinaison séquentielle
 - Procédure plus stable

Étalonnage des jets

- Calibration globale des jets
- Calibration locale des cluster

W polarization in top pair events

V-A current

In the SM:

 $\frac{-ig}{2\sqrt{2}}\overline{t}\,\gamma^{\mu}(1-\gamma^5)V_{tb}bW_{\mu}$

spin = 1/2

W belicity: longitudinal or left

Polarization measurement

Use the lepton from W as a "spin analyzer"

 Angle ψ between I⁺ (W rest frame) and the W⁺ directions (top rest frame)

$$\frac{1}{N}\frac{dN}{d\cos\Psi} = \frac{3}{2}\left[F_0\left(\frac{\sin\Psi}{\sqrt{2}}\right)^2 + F_L\left(\frac{1-\cos\Psi}{2}\right)^2 + F_R\left(\frac{1+\cos\Psi}{2}\right)^2\right]$$

 \rightarrow Access to F_0 , F_1 , F_R

"Left handed" F

Standard Model:

 $F_1 = 2m_W^2/(m_t^2 + 2m_W^2)$ = 0.297

"Longitudinal" F₀

Standard Model:

 $F_0 = m_t^2 / (m_t^2 + 2m_W^2)$ = 0.703

"Right handed" F_R

Standard Model:

 $F_{p} = 0.00$ (forbidden) $(m_b=0 approx.)$

63

Single Top Triggers

Trigger turn-on curves

Figure 6: Turn-on curves are shown for the mu20i (a) and the e25i (b) trigger. In both plots, the circles represent Wt-channel single-top, the squares represent s-channel single-top, and the triangles represent t-channel single-top events.

Améliorations et Perspectives

- Combinaison des canaux t/s/Wt
 - Fit simultané des trois canaux
 - Généralisation a 3D du fit de vraisemblance

