Top, Single Top et la Recherche de Nouvelle Physique au LHC

Séminaire CPPM – 19.01.09

Julien Donini, LPSC Grenoble

Le Quark Top

Tour d'Horizon

- La physique du quark top
 - 30 ans d'histoire
 - Propriétés du quark top
 - Recherche d'une physique au-delà du modèle standard

• Le top au LHC: un outil précieux

- Détermination des échelles d'énergie
- Efficacité étiquetage des quarks b

• La production du top isolé

- Le single top: fenêtre vers la nouvelle physique
- Recherche du single top dans ATLAS

• 1974: deux familles de leptons et de quarks

$$\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_\mu \\ \mu \end{pmatrix} \qquad \qquad \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix}$$

- 1975: découverte du lepton τ à SLAC
 - → Première particule d'une 3^{ème} génération
- 1977: découverte du méson Y(bb) au Fermilab
 - →Un 5^{ème} quark: le b
 - → Fait-il partie d'un doublet d'isospin ?

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} ? \\ b \end{pmatrix}$$

- 1984: DESY (JADE): collisions $e^+e^- \rightarrow bb \rightarrow \mu^{\pm}+X$
 - Mesure asymétrie de charge avant-arrière A_{FB}
 - A_{FB} = 22.5 ± 6.5 %
 - MS: isodoublet 25.2%, isosinglet: 0% !
 - ➔ Isodoublet: il doit y avoir un quark top !

Recherche du top dans les collisionneurs e⁺e⁻

- Recherche du toponium (résonnance t-tbar)
- 1970'-80': PETRA, TRISTAN: $e^+e^- \rightarrow \gamma^* \rightarrow tt$
- 1989-95: LEP/SLC: $e^+e^- \rightarrow Z \rightarrow tt$
- \rightarrow Limite masse top m_t > 45 GeV
- Recherches électrofaibles indirectes
 - Fit observables du Z (m_Z , Γ_Z , A_{FB} ...)
 - → 150 < m_t <170 GeV

- Collisionneurs p-pbar
 - 1984-90: UA1 et UA2: $p\overline{p} \rightarrow W \rightarrow tb$
 - 1988-1994: Tevatron: $pp \rightarrow t\bar{t} \rightarrow W^*bW^*b$
 - Signature: lepton+jets
 - Reconstruction masse tranverse W
 - $t \rightarrow W^*b$, avec W off-shell ($m_t < m_W$)
 - Pas de signal observé ...
 - \rightarrow masse top > m_w
 - → stratégie de recherche différente

• 1995: recherches au Tevatron

- Collisions pp à 1.8 TeV, deux expériences CDF et DØ
- m_t > m_W: quark top est recherché dans la production par paires
 - $p\overline{p} \rightarrow tt \rightarrow WbWb$ avec un $W \rightarrow Iv$ et $W \rightarrow qq'$
 - Fond W+jets important

➔ Découverte !

Tevatron	m _t
DØ	199 ± 30 GeV
CDF	176 ± 13 GeV

Le top est lourd ! $m_t \sim 40 \text{ x } m_b$!

- Section efficace de production: approche théorique
 - Théorème de factorisation

- Section efficace de production: approche théorique
 - Théorème de factorisation

$$\boldsymbol{\sigma}(\hat{s}, m_t^2) = \sum_{i,j} \int dx_i dx_j f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2) \cdot \boldsymbol{\sigma}_{ij}(ij \to t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$

Intéraction courte distance entre les partons i et j

- calculs QCD perturbatif
- modes de production dominants (LO)

- Section efficace de production: approche théorique
 - Théorème de factorisation

$$\boldsymbol{\sigma}(\hat{s}, m_t^2) = \sum_{i,j} \int dx_i dx_j f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2) \cdot \boldsymbol{\sigma}_{ij}(ij \to t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$

• Section efficace de production: approche théorique

Théorème de factorisation

$$\boldsymbol{\sigma}(\hat{s}, m_t^2) = \sum_{i,j} \int dx_i dx_j f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2) \cdot \boldsymbol{\sigma}_{ij}(ij \to t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$

Intéraction longue distance

- $f_i(x_i, \mu_f^2)$ extrait de fits globaux sur des données ep (Zeus, H1)
- Distribution de probabilité en fonction de la fraction d'impulsion x_i portée par le parton

• Section efficace de production: approche théorique

Théorème de factorisation

$$\sigma(\hat{s}, m_t^2) = \sum_{i,j} \int dx_i dx_j f_i(x_i, \mu_f^2) f_j(x_j, \mu_f^2) \cdot \sigma_{ij}(ij \rightarrow t\bar{t}; \hat{s}, \mu_R^2, \mu_f^2)$$
Production au seuil $x_i \approx 2m_t / \sqrt{s}$
• LHC : $\sqrt{s} = 14 \text{ TeV} \rightarrow x_i \approx 0.025$
 $\rightarrow qq (10\%) \text{ et gg (90\%)}$
• TeVatron : $\sqrt{s} = 1.96 \text{ TeV} \rightarrow x_i \approx$
0.175
 $\rightarrow qq (85\%) \text{ et gg (15\%)}$
 $\gamma qq (85\%) \text{ et gg (15\%)}$

Désintégration du Quark Top

Modes de désintégration

- Durée de vie très courte
 - $\tau_{top} \sim 4 \times 10^{-25} \text{ s} < \tau_{had} \sim 28 \times 10^{-25} \text{ s}$
 - Le top se désintègre avant hadronisation
- BR(t \rightarrow Wb) ~ 100% dans le modèle standard

Modes de désintégration des paires ttbar

En fonction de la désintégration du W

Canal dilepton: 12%

Julien Donini

- → Canal lepton+jets: 44%
- Canal hadronique: 44%

I, q

Physique du Top

Mesure des propriétés du quark top et tests du modèle standard

Physique du Top

Tests du modèle standard et recherche de nouvelle physique

→ quark 4^{ème} génération, bosons de jauge supplémentaires, nouveaux bosons

Recherche du boson de Higgs chargé

- Boson H[±]
 - Prédit dans nombreux modèles de Higgs non minimaux (2HDM,...)
 - Découverte → signe de nouvelle physique
- MSSM
 - $m_H < m_{top}$: $t \rightarrow H^+b$; $H^+ \rightarrow \tau v$ (mode dominant)
 - $m_H > m_{top}$: gb \rightarrow tH⁺; H⁺ \rightarrow tb (mode dominant)

 $\tan \beta = \langle H_U \rangle / \langle H_D \rangle$

Recherche du boson de Higgs chargé

Un exemple au Tevatron

- Recherche H[±] léger dans la production de paires ttbar
- $t \rightarrow H^+b; H^+ \rightarrow cs$
- Reconstruction masse inv. dijet dans les ev. lepton+jets

Julien Donini

21

Recherche du boson de Higgs chargé

• Un exemple du LHC

- Higgs chargé léger (ATLAS)
- Recherche $H^+ \rightarrow \tau v$
 - $tt \rightarrow bH^+bW^- \rightarrow b\tau(had/lep)vbqq$
 - $tt \rightarrow bH^+bW^- \rightarrow b\tau(had)vblv$

tt \rightarrow bH+bW- \rightarrow b τ (had)vbqq

Le Top comme Outil de Calibration au LHC

Échelle d'énergie des jets

Reconstruction des jets

- Dépôt calorimétriques, traces
- Algorithmes: cône, K_t, etc ...
- Corrections énergétiques

Échelle d'énergie des jets (JES)

- Reconstruction de l'énergie du parton initial (quark, gluon)
- Essentiel pour étude du top, QCD, recherche Higgs …
- Incertitude sur la JES dominante sur mesures masse, sec. eff...

Échelle d'énergie des jets

- Corrections des jets dans ATLAS
 - Corrections MC et obtenues à partir des données

Mesure de la JES avec le Top

- Détermination de la JES in-situ avec W→jj
 - Abondance paires ttbar: étalonnage des jets avec W hadronique
 - Sélection: lepton isolé, ≥4 jets, 2 b-tags, large ME_t: pureté 65-80%
 - 1 fb⁻¹: qques milliers paires W→jj

Méthodes

Corrections Itérative

$$\begin{split} & E^{\textit{corr}} \!=\! K\left(E\right) E \\ & M_{\textit{W}}^{\textit{PDG}} \!=\! \sqrt{K\left(E_1\right) K\left(E_2\right)} \, M_{\textit{jj}} \end{split}$$

- Templates
 - Templates masse dijet
 - 2 paramètres libres:
 - → échelle d'énergie et résolution
 - Fit des données
- Précision ~2% avec 50 pb⁻¹ (objectif 1% avec 1 fb⁻¹)

Échelle d'énergie des b-jets (b-JES)

• Propriétés des b-jets

- massif m_B ~ 5 GeV
- Fragmentation dure x_B~70%
- Désintégration semi-leptonique
 - $\sim 40\% \rightarrow$ lepton (e/mu)
- Longue durée de vie
 - cτ ~ 470 μm [pdg]
 - Pour E_B ~ 50 Gev, ct ~ 5mm

Corrections spécifiques

- Incertitude sur E(b-jets) \rightarrow err. syst. importante en physique du top
- Correction spécifiques aux b-jets: reconstruction E(b-quark)
- Comparaison données/MC
 - Incertitude sur les propriétés des b-jets → incertitude sur le MC

b-JES au Tevatron

Mesures de masse du top

 Incertitude sur l'énergie des b-jets (BR semi-leptonique, fragmentation, réponse calo.) → erreur systématique

Mesure b-JES dans le processus Z→bb (CDF)

- Extraction signal Z→bb du fond dijet QCD
- Comparaison data/MC → b-JES
- Trigger spécifique
- Fond QCD estimé à partir des données
- Fit likelihood non-binné
- → Mesure simultanée signal et b-JES

→ Précision b-JES ~ 2% avec 0.6 fb⁻¹

J. Donini et al., NIM A 596 (2008)

b-JES dans ATLAS

Corrections b-jets semi-muoniques

- Méthode purement MC,
- Paramétrizée en fonction Pt^{muon}
- doit être validée sur les données

Méthode de b-jet 'balancing'

- γ+bb
- Z+(b)jets
- S/B raisonnable, travail préliminaire
- ttbar \rightarrow I+jets
 - Extraction b-JES à partir de m_{top}
 - $M_{jj} \rightarrow m_W[pdg], M_{jjb} \rightarrow m_{top}[Tevatron]$
 - Précision ~ 3% avec 100 pb⁻¹
 - Autres méthodes en développement
 - Mesure simultanée b-JES et m_{top}
 - Fit cinématique de l'ev. ttbar→ l+jets

Julien Donini

 m_{top} [Tev.] = 172.4 ± 1.2 GeV

Étiquetage des b dans ATLAS

• Algorithmes basés sur le paramètre d'impact

- $d_0 \rightarrow$ likelihood (b vs uds) pour chaque trace
 - poids total pour chaque jet
 - Algorithmes 2D et 3D
- Jet probability
- Vertex secondaire
 - Fit VS à partir des traces à gd d₀
 - likelihood à partir des variables du VS
 - Masse vertex, fraction d'énergie, N_{2-traces} vertex
 - Meilleur résultats si combiné avec alg. IP
- Soft lepton
 - Désintégration s-l
 - Limité par BR

Mesure Efficacité de b-tagging avec le Top

- Commissioning des algorithmes
 - Mesure efficacité b-tagging sur les données
- Méthode de comptage
 - Sélection d'év. ttbar dans le canal lepton+jets
 - lepton (p_T >20 GeV), missing- E_T >20 GeV, 4 jets E_T >30 GeV
 - Comptage des jets étiquetés b
 - Fit pour mesurer ε_{b} , ε_{c} et σ_{tt} (ε_{uds} est supposé connu)
 - Méthode similaire avec ev. dileptons (ee/μμ/eμ)
 - ➔ résolution to ±3%(stat) ±3%(syst) à 200 pb⁻¹

Mesure Efficacité de b-tagging avec le Top

- Méthode cinématique
 - Exploite cinématique/topologie ev. ttbar semi-leptoniques
 - b-tag + 2jets légers: top hadronique
 - Test ε_b jet coté leptonique
 - combinaisons correctes: 3 méthodes
 - Sél. topologique: masse m_{top} reconstruite
 - Likelihood: jet/lepton P_t et angles
 - Cinématique: χ^2 de chaque combinaison
 - Pureté échantillons 70-90% ttbar
 - Estimation fond dans les données
 - Efficacité en fonction de jet E_T, η
 - ➔ Précision ±3-14%(syst) ±5%(stat) (200pb⁻¹)

Single Top: fenêtre vers la Nouvelle Physique

Single Top

• Le top isolé

- Production d'un seul quark top par intéraction faible
- 3 modes de production

voie t (fusion W-g)

voie s (W*)

voie Wt (Prod. Associée)

Processus	Tev.	LHC	
t-tbar	7	833	
voie t	2	246	x120 a
voie s	0.9	11	x12
voie Wt	0.1	66	x 660 ·

x120 au LHC
x12
x 660 \rightarrow observable au LHC

Le Single Top au Tevatron

Défis expérimental

- Fond W+jets très important
- → Techniques multi-variables

Evidence d'un signal Single top au Tevatron mais pas encore d'observation

CDF and DØ tb+tqb Cross Section

Le Single Top au LHC ?

Fenêtre vers la nouvelle physique

- Production: interaction faible
- Section efficace directement proportionnelle à |v_{tb}|²
- → Sensible à toute nouvelle particule pouvant modifier le couplage faible du top

Le Single Top au LHC ?

Fenêtre vers la nouvelle physique

- Production: interaction faible
- Section efficace directement proportionnelle à |v_{tb}|²
- → Sensible à toute nouvelle particule pouvant modifier le couplage faible du top

voie s

- W' (GUT, extra-dim)
- H^{\pm} MSSM
- Techni-pion

Le Single Top et la Nouvelle Physique

Fenêtre vers la nouvelle physique

- Mesure section efficace des différents processus de production single top → contraintes sur la nouvelle physique
- Précision cruciale !

Mesures $\sigma_{single-top}$ dans ATLAS

• Mesure de section efficace

- Pour les 3 voies de production du single top
- Techniques simples: coupures séquentielles
 - ... et avec des outils plus sophistiqués: MVA
- Perspectives pour 1-10 fb⁻¹
- Erreur systématiques réalistes
 - Incertitudes systématiques attendues (JES, b-tag ...)
 - Sections efficaces théoriques
 - Simulation complète du détecteur ATLAS
- Références
 - CERN-OPEN-2008-020 (ATLAS collaboration)
 - ATL-PHYS-INT-2008-041 (J. Donini, B.Clement, A.Lucotte, A.Shibata, N. Triplett)

Signatures Single Top

Signature: 1 b-jet central à grand p_t, W leptonique, 1-2 extra jets

Voie t: fusion Wg ($\sigma_{NLO} = 246 \pm 12 \text{ pb}$)

- 1 ou 2 jets vers l'avant (b-jet surtout)
- W leptonique: 1 lepton (e, μ) à grand p_T + E_T manquante

Voie s: W^{*} ($\sigma_{NLO} = 11 \pm 1 \text{ pb}$)

- 1 deuxième b-jet central
- W leptonique: 1 lepton (e, μ) à grand p_T + E_T manquante

Production associée Wt ($\sigma_{NLO} = 66 \pm 2 \text{ pb}$)• 1 deuxième boson W

- canal lepton + jet: 2 jets,1 lepton, E_T manquante
- canal di-lepton : 2 leptons, E_T manquante, 0 extra jet
 - (non traité ici)

Générateurs MC utilisés : AcerMC + Pythia (MC@NLO+Herwig)

Fond Physiques Principaux

Paires top ($\sigma \approx 800$ pb) \rightarrow Fond dominant

- peut-être réduit avec 1 b-tag veto ou une coupure sur le jet avant
- **générateurs**: MC@NLO+Herwig (NLO), AcerMC + Pythia (ISR/FSR)

W+jets

W+jets légers ($\sigma \approx O(100)$ nb) W+bb+jets ($\sigma \approx O(0.1)$ nb)

 coupure élevée sur b-jet pt aide à réduire ce fond

• **générateurs**: Alpgen + Pythia (+K fact)

Événements Multi-jets avec un lepton mal-identifié

- coupure triangulaire ME_{T} vs $\Delta\phi(Lepton,\,ME_{T})$ permet de réduire ce fond
- générateur: Pythia dijet

Sélection des Evénements

présélection commune

- Sélection t→Wb→lvb
- Réduction fond multijets et W+jets

+ sélection spécifique à chaque analyse

Événements Sélectionnés: 1fb⁻¹

Processus	Voie t g	Voie s	Voie Wt
Selection	• b-jet: p _T >50 GeV • jet léger η >2.5	 2^{ème} b-jet p_T>30 GeV Veto extra jet p_T>15 GeV Coupures: H_T(jets), ΔR(b1,b2), p_T(lep) 	 b-jet p_T>50 GeV Veto extra b-jet, Coupure masse du W hadronique
Signal	1460	24.8	639
Autres ST	148	39.5	1418
Ttbar	2816	145.1	3022
W+jets	942	66.4	3384
Fond total	3906	251	7824
S/B	0.37	0.1	0.08
S/√B	23.4	1.6	7.2

Significance élevée pour les voies t et Wt. Mais pas de systèmatiques !

Analyse Multi-variables

- Amélioration de la séparation du signal
 - Combinaison de plusieurs variables (faiblement) discriminantes
 - Méthodes multi-variables en général très efficaces
 - mais nécessitent validation avec les données réelles
- Rapport de vraisemblance S/(S+B): voie s

 $L = \prod P_{Signal}(x_i) / (\prod P_{Signal}(x_i) + \prod P_{Background}(x_i))$

• Arbre de décision boostés (BDT): voies t et Wt

Arbre de décision : à chaque nœud → variable et coupure qui donnent la meilleure séparation
'Boosting': moyenne de plusieurs arbres, poids.

Analyse Multi-variables

 Pour chaque analyse définition de plusieurs variable discriminantes

- 1 discriminant par fond principal
- Différents ensembles de variables pour chaque discriminant
- Séparation en canaux multiples (électron/muon, multiplicité jet)
- Coupure discriminant: minimisation erreur totale sur σ_{signal}
- Incertitude sur la section efficace

$$L(\sigma) = \prod_{\text{channel}\,i}^{N} \frac{e^{-(B_i + \alpha_i L_i \sigma)} \cdot (B_i + \alpha_i L_i \sigma)^{D_i}}{D_i!}$$

- α_i : acceptance signal
- L : luminosité integrée

-
$$D_i$$
: données = $B_i + \alpha_i L \sigma_{th}$

- $-\sigma$: section efficace
- Pseudo-expériences: génération données D (Poisson), shift B_i, α_i, L avec toutes les sources d'erreurs systématiques

Analyse voie t

Sélections

- 1 b-jet p_T>50 GeV
- 1 jet léger $|\eta|$ >2.5 (analyse séquentielle seulement)

1 discriminant (BDT) vs paires de top

Source	δσ/σ (seq.)	δσ/σ (BDT)
Erreur stat.	5.0%	5.7%
Stat. MC	6.5%	7.9%
Luminosité	18.3%	8.8%
Efficacité B-tag	18.1%	6.6%
Échelle d'énergie	21.6%	9.9%
Lepton ID, trigger	2.3%	1.8%
Théorie (σ _{th} , PDF, ISR/FSR…)	28.1%	13.5%
Total 1(10) fb ⁻¹	45% (22%)	22% (10%)

Analyse voie s

Sélections

- 2 b-jets p_T>30 GeV
- Veto extra jet p_T >15 GeV

5 fonctions de vraisemblance

- vs tt \rightarrow I+jets, tt \rightarrow II, tt \rightarrow I+ $\tau/\tau\tau$
- vs W→I+jets, ST voie t

S~15, S/B~20% (1fb⁻¹)

Source	δσ/σ Likelihood
Erreur stat.	64%
Stat. MC	29%
Luminosité	31%
Efficacité b-tag	44%
Échelle d'énergie	25%
Lepton ID, trigger	6%
Théorie (σ _{th} , PDF, ISR/FSR…)	74%
Total 1(10) fb ⁻¹	95% (48%)

Voie Wt

Sélections

- b-jet p_T>50 GeV
- Veto extra b-jet

12 Boosted Decision Trees

- vs tt→l+jets, tt→dilepton,
 W→l+jets, voie t
- BDT: 2/3/4 multiplicité de jets

S~80, S/B~40% (1fb⁻¹)

Source	δσ/σ BDT
Erreur stat.	20.6%
Stat. MC	15.6%
Luminosité	20%
Efficacité b-tag	16%
Échelle d'énergie	11%
Lepton ID, trigger	3.2%
Theorie (σ _{th} , PDF, ISR/FSR…)	35%
Total 1(10) fb ⁻¹	48%(19%)

Améliorations et Perspectives

- Voie t
 - BDT vs W+jets, ttbar (I+jets, II):
 - Multiplicité: 2/3/4 jets →12 discriminants
 - Résultat plus stable
 - pas de coupure en queue de distributions
 - S/B ~1.6, δσ/σ=19%

Multiplicité: 2 jets

Améliorations et Perspectives

Combinaison des canaux t/s/Wt

- Mesure simultanée des trois canaux
- Généralisation à 3D du fit de vraisemblance

Conclusion

• Le quark top au LHC

- Produit en abondance
- → Sensibilité nouvelle physique
- \rightarrow Outil de calibration

Le cas du single top (ATLAS)

- Voie t: observation possible avec 1 fb⁻¹
- Observation voie Wt avec ~10 fb⁻¹
- Voie s plus difficile: > 30 fb⁻¹

Perspectives pour le top au LHC

- 1^{ère} année: redécouverte du top, (b)-JES, b-tagging, validation MC/données
- 2^{ème} année: méthodes multi-variables, observation single top voie t, étude des propriétés du top, test modèle standard
- 3ème année: sensibilité nouvelle physique

BACKUP

Fits Electrofaibles

	Measurement	Fit	$ C^n $	^{neas} –C 1	כ ^{וזי} ן/ס	ieas 3
$\Delta \alpha_{\rm had}^{(5)}({\rm m_{Z}})$	0.02758 ± 0.00035	0.02767			_	
m _z [GeV]	91.1875 ± 0.0021	91.1875	1			
Γ _z [GeV]	2.4952 ± 0.0023	2.4958				
σ _{had} [nb]	41.540 ± 0.037	41.478			•	
R _I	20.767 ± 0.025	20.743				
A ^{0,I} fb	0.01714 ± 0.00095	0.01644				
A _l (P _v)	0.1465 ± 0.0032	0.1481				
R _b	0.21629 ± 0.00066	0.21582				
R _c	0.1721 ± 0.0030	0.1722	1			
A ^{0,b}	0.0992 ± 0.0016	0.1038				
A ^{0,c}	0.0707 ± 0.0035	0.0742				
A _b	$\textbf{0.923} \pm \textbf{0.020}$	0.935		•		
A _c	0.670 ± 0.027	0.668	I.			
A _l (SLD)	0.1513 ± 0.0021	0.1481				
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314				
m _w [GeV]	80.399 ± 0.025	80.376				
Γ _w [GeV]	2.098 ± 0.048	2.092				
m _t [GeV]	172.4 ± 1.2	172.5				
July 2008			Ó	1	 2	3

Contraintes sur le Boson de Higgs

Mixing des Quarks

In the Standard Model, also the down-type quarks mix. Relevant part of Lagrangian with W^{\pm}_{μ} - quark interactions reads:

$$\mathcal{L}|_{W^{\pm}-\text{quark}}(x) = gW_{\mu}^{-}(x) \sum_{\substack{\alpha=u,c,t\\i=d,s,b}} V_{\alpha i} \ (\bar{\alpha}(x)\gamma^{\mu}i(x)) + c.c.$$

Interactions mix the down-type quarks via the Cabbibo-Kobayashi-Maskawa quark mixing matrix V.

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

Thus a top quark can emit a W-boson and become either a b $(\propto V_{tb})$, a s $(\propto V_{ts})$, a s $(\propto V_{td})$. We know now

Section efficace ttbar (CDF)

Propriétés du Quark Top

Quarks de 4^{ème} Génération

V_µ

μ°

W

Đ.

t

ĩ

Recherche de quark top massif de 4^{ème} génération: t'

• même signature que le top

Quark t' prédit par plusieurs

modèles susy, little higgs.

Le Détecteur ATLAS au LHC

Les Sous-détecteurs d'ATLAS

 η coverage

Measurement

 ± 2.5

 ± 3.2

 ± 3.2

 $3.1 < |\eta| < 4.9$

 ± 2.7

Trigger

 ± 2.5

 ± 3.2

 $3.1 < |\eta| < 4.9$

 ± 2.4

Reconstruction des Jets dans ATLAS

Clusters

W polarization in top pair events

63

Single Top Triggers

Trigger turn-on curves

Figure 6: Turn-on curves are shown for the mu20i (a) and the e25i (b) trigger. In both plots, the circles represent Wt-channel single-top, the squares represent s-channel single-top, and the triangles represent t-channel single-top events.

Améliorations et Perspectives

Combinaison des canaux t/s/Wt

- Fit simultané des trois canaux
- Généralisation a 3D du fit de vraisemblance

