wEPTA

Constraining
Stochastic Gravitational Wave Backgrounds
with Pulsar Timing Array

The case of phase transitions

CEA
11/12/2024

N\ Hippolyte Quelquejay Leclere
STEPUP 3rd year PhD student L& Universite

ECOLE DOCTORALE 1




The GWB properties in PTA

For an isotropic, unpolarized and stationary SGWB,
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This is characterized by both

- Overlap reduction function 1',p

- Power spectral density Sr(f )
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The GWB inference in PTA

- The PSD can be parameterised by hyper-parameters that can then be fitted to the data
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As long as one has a functional form for the residuals PSD, one can fit its

associated hyperparameters




The expected GWBs in the PTA band

GWB produced by a population of SMBHB

Astrophysical Sources

Individual SMBH Binary Source

Cosmological Sources

Phase Transitions

- Inflation

Topological defects




Phase Transitions - The GW emission mechanisms
Diyect emission
First Order Phase Transition — nucleation of true vacuum region
- Bubble collisions

- Sound waves
- Turbulence of the plasma

Indirect emission

credits: Pierre Auclair

Formation of a network of topological defects

- Cosmic strings
- Domain walls



The GWB from phase transitions in brief

2
s «
O (f) =D Qb( u ) (HR+)*S(f /1)
-10 1 + ax
10
10712} 7 ~ Ks Qlx 3
G ) = DO (5] — (HR)S(f /1)
= =14 1 + ax ‘
ol 1077F 1
1E h
g | ® A9 * [’ Percolation temperature of the phase transition
f p X * p P
15718} 2R,
10-20 . 1 . (X4 Strength of the transition
0.001 0.1 10 1000 10°
Caprini (2010) k/p

H " R* Average bubble separation at nucleation

— The left and ride side slopes can either be estimated theoretically or derived using simulations



Afzal etal.,, 2023, The NANOGrav 15-year Data Set:
Search for Signals from New Physics.

Antoniadis et al., 2023, The second data release from the EPTA

IV. Implications for massive black holes, dark matter, and the early Universe
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Afzal etal,, 2023, The NANOGrav 15-year Data Set:
Results from NANOGrav 15yr dataset Search for Signals from New Physics.

I PT-BUBBLE + SMBHB
I PT-BUBBLE

PT-SOUND + SMBHB
PT-SOUND

A strong and slow PT is
preferred

-

[ PR U W N O O 1 1 4 1 lIII‘IIIlllllllll!vllllr‘llll--l'llll‘ll'lllll“ll: 1 FETTI
-2-10 1 -1 0 -2 -1 -2-10 1 —1 0 -2 —1
logg Tx/GeV logg ax log,o H« R« logo Tx/GeV log o s log,0 H« R«

— Compatible with BSM models in which the chiral-symmetry-breaking phase transition in quantum
chromodynamics (QCD) is a strong first-order phase transition [Li et al. 2021; Neronov et al. 2021] 8



Turbulence after QCD phase transition
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)\* Characteristic scale of the turbulence
Q* Ratio of the turbulent energy density to the radiation one

T* Temperature scale of the phase transition

— The preferred set of parameters require a lot of

turbulent energy density but can fit also fit the data with
smaller values of Q.

See Roper Pol et al [2201.05630] for model description 9



Beyond the spectral inference

- The consistency with the spectral properties of the observed signal is not our only way to

infer the origin of the GW signal
- Indeed, astrophysical and cosmological signals are expected to have different properties
1. Anisotropy

2. Non-stationarity

- Those properties are under current investigations by the different PTAs
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Caprini, Pujolas, HQL, Rompineve, Steer (2024)

The synergy of GW detectors
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Summary

- The common correlated red noise seen by the PTA collaborations open a new window on
the early Universe via GW observation

- The spectral properties of the common signal can be compared to theoretical expectations
to constrain their parameters

- Cosmological phase transitions are a possible source of GWB in the PTA band

- The data are consistent with a strong and slow first order PT happening around 10 to 100
MeV

- Further data but also study beyond the spectral properties are needed to identity the origin
of this signal
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Backup slides



See Caprini, Figueroa [1801.04268] for review

Primordial GWs | SGWB from inflation

— very simple modelisation : power law to link the large CMB scales to small PTA scales

. Tensor spectral index
Tensor to scalar ratio

. S

Qaw(f) ~ 1.5 x 10—16(0.532)(]{)

N

CMB scale (~ 0.05 Mpc™)

— 2 model parameters, for slow roll inflation: ny =~ 0O

— Constraints from CMB (Planck collaboration) : r < 0.076 and —0.55 < ny < 2.54 at 95%
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nr

Explaining all the PTA CRN with inflation ?

log,yr = —12.18f§;8(1)

— Not compatible with classic slow roll inflation

— Must be a blue tilted spectrum

np = 2_291?:?{ Obtaining upper limit
including simple circular
w SMBHB background
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How cosmic strings produce GWs ?

p spontaneous
symmetry breaking

S
7] ]
"'
7

S

S
=

i
257
\/

==
iy
/AL

\\*.':"'

\

L7

<>

<

S
7

>

~4

<
NS

N N

SOCSS
=

%

N

at 1 < \/Gu

credits: Pierre Auclair

— Loops are produced and emit GWs via
oscillation and burst emission (cusp, kink,

kink-kink collision)

Some assumptions used
— stable cosmic strings associated to a local symmetry
— intercommutation probability of 1

— GW emission is dominant (Nambu-Goto strings)

credits: freeastroscience
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Posterior distribution

Constraints for smooth loops network
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BOS model
LRS model

BOS+SMBHB model
.1 LRS+SMBHB model

(two models used: BOS, LRS)

— 90% symmetric credible intervals

BOSmodel  log;, Gu = —10.06753%

LRS model  log; Gu = —10.637935

— 95% confidence upper limit extracted
from a two component SGWB analysis

BOS+SMBHB model log;q Gu < —9.75

LRS+SMBHB model log,, G < —10.44
17



CS - BOS model
CS - LRS model
== Turbulence model

Inflation model
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Afzal etal.,, 2023, The NANOGrav 15-year Data Set:
Search for Signals from New Physics.
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Afzal etal.,, 2023, The NANOGrav 15-year Data Set:
Search for Signals from New Physics.
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