

Gravitational waves & Pulsars Timing Array

Antoine Petiteau (CEA/IRFU/DPhP)

Mini-workshop on Gravitational waves and the QGP-hadron transition in the early universe

CEA/IRFU/DPhN - 12th December 2024

GW spectrum

2 PTA - A. Petiteau - WS GW & QGP phase transition — CEA/IRFU/DPhN - 12 December 2024

REV. PULSAR

WEPTA

GW spectrum

2 PTA - A. Petiteau - WS GW & QGP phase transition — CEA/IRFU/DPhN - 12 December 2024

ENGLISH PULSAR

WEPTA

Pulsars

CAASTRO

- ‣ Neutron star with high magnetic field
- \triangleright Rotation axis \neq magnetic axis \Rightarrow lighthouse effect
- ‣ Emission:
	- Radio, gamma, etc

Pulsars

CAASTRO

- ‣ Neutron star with high magnetic field
- \triangleright Rotation axis \neq magnetic axis \Rightarrow lighthouse effect
- ‣ Emission:
	- Radio, gamma, etc

Pulsars observations

‣ Somewhere in Sologne ... the Nançay radio telescope

‣ Somewhere in Sologne ... the Nançay radio telescope

‣ Precise timing of arrival time of pulses => Time Of Arrival (TOA)

‣ Precise timing of arrival time of pulses => Time Of Arrival (TOA)

• Precise timing of arrival time of pulses => Time Of Arrival (TOA)

irfu

cea

Pulsar timing

• Precise timing of arrival time of pulses => Time Of Arrival (TOA)

‣ Precise timing of arrival time of pulses => Time Of Arrival (TOA)

‣ Precise timing of arrival time of pulses => Time Of Arrival (TOA)

6 PTA - A. Petiteau - WS GW & QGP phase transition — CEA/IRFU/DPhN - 12 December 2024

‣ TOAs are not perfectly regular due to many effects:

- ‣ TOAs are not perfectly regular due to many effects:
	- Pulsar itself:
		- period,
		- evolution of the period,
		- sky position

WEPTA

- ‣ TOAs are not perfectly regular due to many effects:
	- Pulsar itself:
		- period,
		- evolution of the period,
		- sky position
	- Pulsar environnement:
		- binary system,
		- proper motion

WEPTA

- ‣ TOAs are not perfectly regular due to many effects:
	- Pulsar itself:
		- period,
		- evolution of the period,
		- sky position
	- Pulsar environnement:
		- binary system,
		- proper motion
	- Beam propagation: interstellar medium

e-

e-

e-

 e^{-} e^{-}

WEPT

e-

 e^-

- ‣ TOAs are not perfectly regular due to many effects:
	- Pulsar itself:
		- period,
		- evolution of the period,
		- sky position
	- Pulsar environnement:
		- binary system,
		- proper motion
	- Beam propagation: interstellar medium
	- Earth position (ephemerides of the Solar System)

e-

e-

e-

 e^{-} e^{-}

WEPT

e-

e- e-

- ‣ TOAs are not perfectly regular due to many effects:
	- Pulsar itself:
		- period,
		- evolution of the period,
		- sky position
	- Pulsar environnement:
		- binary system,
		- proper motion
	- Beam propagation: interstellar medium
	- Earth position (ephemerides of the Solar System)
	- Gravitational waves …

e-

e-

e-

 e^{-} e^{-}

WEPT

e-

e- e-

- ‣ TOAs are not perfectly regular due to many effects:
	- Pulsar itself:
		- period,
		- evolution of the period,
		- sky position
	- Pulsar environnement:
		- binary system,
		- proper motion
	- Beam propagation: interstellar medium
	- Earth position (ephemerides of the Solar System)
	- Gravitational waves …
- **Nodelling of each pulsars**

e-

e-

e-

 e^{-} e^{-}

WEPT

e-

e- e-

- ‣ Examples:
	- J1909-3744:

PTA - A. Petiteau - WS GW & QGP phase transition $-$ CEA/IRFU_{/JUMP6} $\frac{1}{2}$ Jumes 2.58546e-07 +/- 2.58546e-07

Name fit prefit RAI 5.01691 +/- 5.01691 yes DECI yes $-0.658641 +/- -0.658641$ F₀ yes 339.316 +/- 339.316 F1 -1.6148e-15 +/- -1.6148e-15 yes **DM** 10.3906 +/- 10.3906 yes $-0.000250904 +$ /- -0.000250904 DM1 yes DM₂ 1.48176e-05 +/- 1.48176e-05 yes yes PMRA $-9.52683 + 1 - 9.52683$ PMDEC -35.8098 +/- -35.8098 yes PX $1.0623 + 1.0623$ yes SINI 0.997779 +/- 0.997779 yes PB 1.53345 +/- 1.53345 yes A1 yes 1.89799 +/- 1.89799 PBDOT yes 5.1216e-13 +/- 5.1216e-13 XDOT -1.17023e-15 +/- -1.17023e-15 yes TASC 53114 +/- 53114 yes EPS1 4.93407e-09 +/- 4.93407e-09 yes EPS₂ -1.37334e-07 +/- -1.37334e-07 yes M₂ 0.218395 +/- 0.218395 yes JUMP1 -8.5495e-05 +/- -8.5495e-05 yes JUMP2 -8.49454e-05 +/- -8.49454e-05 yes JUMP3 -8.34176e-05 +/- -8.34176e-05 yes JUMP4 -7.4828e-07 +/- -7.4828e-07 yes

- ‣ Examples:
	- J1713+0747:

…

irfu

 $C22$

8 8 PTA - A. Petiteau - WS GW & QGP phase transition - CEA/IRFU/DPhN - 12 December 2024

irfu

cea

Pulsar noises

‣ White noise :

• $\sigma_{\text{scaled}}^2 = \text{EFAC}^2 \times \sigma_{\text{original}}^2 + \text{EQUAD}^2$, with $\sigma_{\text{original}}^2$ the original errorbars +2

‣ Red noises:

$$
S_k = \frac{A^2}{12\pi^2} \frac{K_{scale}}{\nu^{-k}} \left(\frac{f}{1yr}\right)^{-\gamma} \frac{yr^3}{T_{span}}
$$

*w*ith ν the observation frequency

+2

+2

+2

https://arxiv.org/abs/2306.16225

- RN: standard red noise $(k = 0)$
- DM: Dispersion Measure variations ($k = 2$)
- SV: scattering variations $(k = 4)$
- ‣ Specific features for some pulsar: exponential dips

Pulsar timing and GWs

REAL PROPERTY AS

WEPTA

irfu

cea

Pulsar timing and GWs

‣ When gravitational waves (GWs) are passing between pulsar and Earth, they will slightly modified the arrival time of pulses, i.e. the TOA

irfu

cea

Pulsar timing and GWs

- ‣ When gravitational waves (GWs) are passing between pulsar and Earth, they will slightly modified the arrival time of pulses, i.e. the TOA
- ‣ We have a model for the TOA

Pulsar timing and GWs

- ‣ When gravitational waves (GWs) are passing between pulsar and Earth, they will slightly modified the arrival time of pulses, i.e. the TOA
- ‣ We have a model for the TOA
- $\textcolor{black}{\rightarrow}$ If GWs = $>$ deviation from the model
	- $=$ > GWs observed in the residuals $=$ data model

irfu

 $\underline{\text{cea}}$

Pulsar timing and GWs

11 PTA - A. Petiteau - WS GW & QGP phase transition — CEA/IRFU/DPhN - 12 December 2024

irfu

 $\underline{\text{cea}}$

Pulsar timing and GWs

11 PTA - A. Petiteau - WS GW & QGP phase transition — CEA/IRFU/DPhN - 12 December 2024

Pulsar timing and GWs

‣ GWs => correlated fluctuations in TOAs of multiple pulsars

Observed & emitted pulsar spin frequency

$$
\delta t_{GW}(t_a) = \int_{t_e}^{t_a} \frac{\nu(t') - \nu_0}{\nu_0} dt' = \int_{t_e}^{t_a} \frac{\delta \nu(t')}{\nu_0} dt'
$$

Emission & reception times of pulses Pulsar & GW source sky location

GW characteristic strain

irfu

cea

irfu

cea

Pulsar timing and GWs

‣ For an isotropic GW background, characteristic spatial correlation: Hellings-Down curve: specific relation between correlation of 2 pulsar and their angular separation \Rightarrow signature of GW Background

$$
\Gamma_{\text{GWB}}(\zeta_{IJ}) = \frac{3}{2} x_{IJ} \ln x_{IJ} - \frac{x_{IJ}}{4} + \frac{1}{2} + \frac{1}{2} \delta x_{IJ} \quad \text{with} \quad x_{IJ} = [1 - \cos(\zeta_{IJ})]/2
$$

13 PTA - A. Petiteau - WS GW & QGP phase transition — CEA/IRFU/DPhN - 12 December 2024

Correlated signals

- ‣ 3 potential types of signal correlated between pulsars:
	- Quadrupole:
		- Gravitational waves
	- Dipole:
		- Systematic in the model of the position of the Earth, i.e. solar system ephemeris
	- Monopole:
		- Clock time errors

log10_A=-15.08, gamma=-0.67

h (individual sources)

 10^{-8} Frequency (Hz)

GW sources in the nHz band

‣ Supermassive black hole binaries

- Ex: chirp mass $= 10⁹ M_{Sun}$, 1000 years before merger
- Very massive: masses $> 10⁷ M_{Sun}$
- Close: distance $z < 2$,
- Quasi-monochromatic
- Large number of sources:
	- Individual sources

© Nicole Rager Fuller

© Binétruy et al.

© Mikel Falxa & Alberto Sesana

 10^{-14}

Strain amplitude

 $10¹$

© Binétruy et al.

GW sources in the nHz band

‣ Supermassive black hole binaries

- Ex: chirp mass $= 10⁹ M_{Sun}$, 1000 years before merger
- Very massive: masses $> 10⁷ M_{Sun}$
- Close: distance $z < 2$,
- Quasi-monochromatic
- Large number of sources:
	- Individual sources

- "Stochastic" background built from large number of non-resolved sources
- ‣ Stochastic GW background (SGWB) from cosmological origin:
	- First order phase transition
	- Cosmic strings
	- Primordial GWs

• …

irfu

cea

GWs from phase transition

- During 1st order transition phase, "bubbles" collisions create GWs with a wavelength depending on the size of the Universe at the time of the transition \Rightarrow SGWB
- \sim QCD = $>$ nanoHz
- ‣ Typical model: 2 components (Caprini et al. 2010):
	- Bubbles collisions
	- Kinetic energy of the turbulent motions and magnetic fields sustained by the MHD turbulence.
- ‣ Example of a model (Robert Pol et al. 2022): magnetic fields and bulk fluid motions in the early universe
	- => SGWB generated during phase transition => PTA can constrain: temperature generation, magnetic field amplitude and magnetic field characteristic scale.
- ‣ More details in Hippolyte's talk

EPTA

- ‣ European collaboration:
	- Nancay $RT(FR)$,
	- Effelsberg RT (G),
	- Jodrell Bank Obs. (UK),
	- Westerbork Synthesis RT(NL),
	- Sardinia RT (I).

IPTA

- ‣ Two others collaborations
	- Parkes PTA (Australia)
		- Parkes radiotelescope
	- NANOGrav (USA):
		- Arecibo
		- Green Bank
- ‣ Recent collaborations:
	- InPTA: GMRT, ORT (Inde)
	- CPTA: FAST, … (Chine)
	- MeerKAT (Afrique du Sud)

RATIONAL PULSAR

AUBBE

irfu

cea

‣ Worldwide collaboration: International PTA

PTA collaborations

The International Pulsar Timing Array

 19 $NANOG$ rav

irfu

cea

WEPTA

From NANOGrav's website

- ‣ PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:

- ‣ PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:
	- 1. Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;

- ‣ PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:
	- 1. Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;

TOA

- ‣ PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:
	- 1. Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;

Pulsar 1

- ‣ PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:
	- 1. Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
	- 2. Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar $(-20$ parameters) and the noise model (\sim 10 models with about \sim 20-40 parameters each);

- ‣ PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:
	- 1. Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
	- 2. Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar $(-20$ parameters) and the noise model (\sim 10 models with about \sim 20-40 parameters each);

Pulsar 2

- ‣ PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:
	- 1. Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
	- 2. Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar $(-20$ parameters) and the noise model (\sim 10 models with about \sim 20-40 parameters each);

- ‣ PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:
	- 1. Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
	- 2. Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar $(-20$ parameters) and the noise model (\sim 10 models with about \sim 20-40 parameters each);
	- 3. Global analysis: processing of all pulsars TOAs to estimate parameters of GW signals and global noises (multiple types of signal; from 2 to 100 parameters) allowing some variations of some of the individual pulsar noise parameters.

- ‣ PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:
	- 1. Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
	- 2. Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar $(-20$ parameters) and the noise model (\sim 10 models with about \sim 20-40 parameters each);
	- 3. Global analysis: processing of all pulsars TOAs to estimate parameters of GW signals and global noises (multiple types of signal; from 2 to 100 parameters) allowing some variations of some of the individual pulsar noise parameters.
- ‣ Several tools for each steps developed either locally or within the international collaboration

- ‣ (Step 3) Global analysis:
	- Systematics: ephemerides, clock stability, …
	- Bayesian analysis:

$$
p(\delta t | \vec{\theta}) = \frac{1}{\sqrt{det(2\pi\Sigma)}} exp\left(-\frac{1}{2}\delta t^T \Sigma^{-1} \delta t\right)
$$

i=1

- Continuous waves (i.e. individual sources): *δt* → *δt* − *Nsignals* ∑ *hi*
- Stochastic: Σ
	- GW Background: common noise
	- Noises:
		- White noise: measurement errors $+$ systematics
		- Red noise: low frequency noise on pulsar rotation
		- Dispersion noise due to the propagation through interstellar medium
- Timing parameters (pulsars parameters) also considered

irfu

cea

- ► PTA data analysis is challenging and very demanding in term of computing resources.
- ‣ Several stages of processing:
	- 1. Building Time of Arrival (TOA)
	- 2. Single pulsar analysis
	- 3. Global analysis
- Ideally all the processing steps to be done simultaneously BUT the trans-dimensionality and the size of the parameter space and of the model space to explore, would be enormous and not tractable with the current methods and computing facilities.
- Methods currently used: Bayesian with hypermodel selection (MCMC & nested sampling)
- Data: 30 to 60 pulsars are currently analysed with about 5000 to 10 000 TOAs per pulsar.
- \mapsto TOAs not regularly sampled \Rightarrow likelihood computation required the inversion of a big matrix, Σ^{-1} $(-10^5 \times 10^5 \text{ but soon} \sim 10^6 \times 10^6)$.
- ‣ Current methods are performing some approximations to avoid this inversion.
- ‣ Some exploration of machine learning methods, but not yet full-scale application and very low level of maturity.

irfu

cea

<https://arxiv.org/abs/2306.16214>

Bayes factor:

‣ Acronyms:

- PSRN: Pulsar noise
- CURN: Common Uncorrelated Red Noise
- CLK: Clock Noise (monopole)
- EPH: Solar system ephemeris (dipole)
- \triangleright Significance: when using only new backends, Bayes factor at 60, p-value of \approx 0.001,
	- $\gtrsim 3\sigma$ confidence => strong evidence for the existence of GWB

<https://arxiv.org/abs/2306.16214>

- ‣ GWB parameters (DR2new):
	- logarithmic amplitude: $\log_{10} A = 13.94^{+0.23}_{-0.48}$
	- spectral index: $\gamma = 2.71^{+1.18}_{-0.73}$
- ‣ No dipole and no monopole

 \triangleright

<https://arxiv.org/abs/2306.16214>

‣ Spatial correlation: overlap reduction function

• Binned

• Optimal statistic

irfu

cea

25 PTA - A. Petiteau - WS GW & QGP phase transition — CEA/IRFU/DPhN - 12 December 2024

<https://arxiv.org/abs/2306.16214>

‣ Scrambling the sky position of pulsar, destroy the signal

• Many other tests see<https://arxiv.org/abs/2306.16214>

irfu

 $C22$

EPTA results: GWB

‣ Comparison between EPTA and some Stochastic GW Backhground from cosmological origin Antoniadis et al., A&A June 28, 2023

 \blacktriangleright

EPTA results: individual sources <https://arxiv.org/abs/2306.16226>

- Continuous GW search = Super Massive Black Hole Binary
- \sim GW described by 8 $+$ 2 \times N_{PSR} parameters:
	- Amplitude, frequency, chirp mass, sky position, inclination, polarisation, initial phase, phase at pulsar, pulsar distance
- **Frequentist analysis:**
	- Maximum F-statistic (equivalent to likelihood) at 4.6 nHz

IPTA results

- ‣ Similar results from other PTA collaborations
- ‣ The origin of the signal is still to be understood.
- ‣ IPTA is working on a joined analysis :
	- All TOAs together
	- We should be able to confirm the detection and have a better characterisation soon …
	-

• But complex analysis <https://arxiv.org/abs/2309.00693>

Future

- ‣ Soon (2025-2026) : IPTA Data Release 3
	- Combination of 120 pulsars from almost all radio telescope in the world
	- Expected results:
		- Confirmation of the signal
		- Better characterisation
- ‣ Later (2030) : Square Kilometre Array (SKA):
	- \bullet ~100 pulsars (?) Few tens thousands of TOAs with better timing precision
	- Large improvement in sensitivity
	- \rightarrow Characterise in details the signal (background and/or individual sources):
		- If SMBHBs, understand the population (seed, evolution, merger history, \dots) synergy with LISA
		- If cosmological origins, measure the spectrum in details to understand "physics"
		- If individual sources, measure the waveform \Rightarrow test GR? understand environment of SMBHB
	- Search new sources: memory bursts (during), others …

SKAO

irfu

cea

Thank you !

And now Hippolyte will present the GW from QCD phase transition …

