

Cez

Gravitational waves & Pulsars Timing Array

Antoine Petiteau (CEA/IRFU/DPhP)

Mini-workshop on Gravitational waves and the QGP-hadron transition in the early universe

CEA/IRFU/DPhN - 12th December 2024

GW spectrum

PTA - A. Petiteau - WS GW & QGP phase transition – CEA/IRFU/DPhN - 12 December 2024

EPTA

RTA

GW spectrum

PTA - A. Petiteau - WS GW & QGP phase transition – CEA/IRFU/DPhN - 12 December 2024

PULSAA

EPTA

Pulsars

CAASTRO

- Neutron star with high magnetic field
- Rotation axis \neq magnetic axis => lighthouse effect
- Emission:
 - Radio, gamma, etc

Pulsars

CAASTRO

- Neutron star with high magnetic field
- Rotation axis \neq magnetic axis => lighthouse effect
- Emission:
 - Radio, gamma, etc

Pulsars observations

Somewhere in Sologne ... the Nançay radio telescope

Somewhere in Sologne ... the Nançay radio telescope

Pulsar timing

Pulsar timing

• TOAs are not perfectly regular due to many effects:

PTA - A. Petiteau - WS GW & QGP phase transition – CEA/IRFU/DPhN - 12 December 2024

- TOAs are not perfectly regular due to many effects:
 - Pulsar itself:
 - period,
 - evolution of the period,
 - sky position

- TOAs are not perfectly regular due to many effects:
 - Pulsar itself:
 - period,
 - evolution of the period,
 - sky position
 - Pulsar environnement:
 - binary system,
 - proper motion

- TOAs are not perfectly regular due to many effects:
 - Pulsar itself:
 - period,
 - evolution of the period,
 - sky position
 - Pulsar environnement:
 - binary system,
 - proper motion
 - Beam propagation: interstellar medium

- TOAs are not perfectly regular due to many effects:
 - Pulsar itself:
 - period,
 - evolution of the period,
 - sky position
 - Pulsar environnement:
 - binary system,
 - proper motion
 - Beam propagation: interstellar medium
 - Earth position (ephemerides of the Solar System)

- TOAs are not perfectly regular due to many effects:
 - Pulsar itself:
 - period,
 - evolution of the period,
 - sky position
 - Pulsar environnement:
 - binary system,
 - proper motion
 - Beam propagation: interstellar medium
 - Earth position (ephemerides of the Solar System)
 - Gravitational waves ...

- TOAs are not perfectly regular due to many effects:
 - Pulsar itself:
 - period,
 - evolution of the period,
 - sky position
 - Pulsar environnement:
 - binary system,
 - proper motion
 - Beam propagation: interstellar medium
 - Earth position (ephemerides of the Solar System)
 - Gravitational waves ...
- Modelling of each pulsars

- Examples:
 - J1909-3744:

fit prefit Name RAJ 5.01691 +/- 5.01691 yes DECI yes -0.658641 +/- -0.658641 F0 339.316 +/- 339.316 yes F1 -1.6148e-15 +/- -1.6148e-15 yes DM 10.3906 +/- 10.3906 yes -0.000250904 +/- -0.000250904 DM1 yes DM2 yes 1.48176e-05 +/- 1.48176e-05 PMRA yes -9.52683 +/- -9.52683 PMDEC -35.8098 +/- -35.8098 yes ΡX 1.0623 +/- 1.0623 yes SINI 0.997779 +/- 0.997779 yes PB 1.53345 +/- 1.53345 yes 1.89799 +/- 1.89799 A1 yes PBDOT yes 5.1216e-13 +/- 5.1216e-13 XDOT -1.17023e-15 +/- -1.17023e-15 yes TASC yes 53114 +/- 53114 EPS1 4.93407e-09 +/- 4.93407e-09 yes EPS2 -1.37334e-07 +/- -1.37334e-07 yes M2 0.218395 +/- 0.218395 yes JUMP1 yes -8.5495e-05 +/- -8.5495e-05 JUMP2 -8.49454e-05 +/- -8.49454e-05 yes IUMP3 -8.34176e-05 +/- -8.34176e-05 yes JUMP4 -7.4828e-07 +/- -7.4828e-07 yes 2.58546e-07 +/- 2.58546e-07 yes

PTA - A. Petiteau - WS GW & QGP phase transition — CEA/IRFU/ JUMP6

- Examples:
 - J1713+0747:

Name	fit	prefit			
RAJ	yes	4.51091 +/- 4.51091			
DECJ	yes	0.136027 +/- 0.136027			
FO	yes	218.812 +/- 218.812 -4.08396e-16 +/4.08396e-16			
F1	yes				
DM	yes	15.9926 +/- 15.9926			
DM1	yes	1.42664e-05 +/- 1.42664e-05			
DM2	yes	-9.12919e-06 +/9.12919e-06			
PMRA	yes	4.92273 +/- 4.92273			
PMDEC	yes	-3.91239 +/3.91239			
РХ	yes	0.92902 +/- 0.92902			
РВ	yes	67.8251 +/- 67.8251			
то	yes	48742 +/- 48742			
A1	yes	32.3424 +/- 32.3424			
OM	yes	176.21 +/- 176.21			
ECC	yes	7.49383e-05 +/- 7.49383e-05			
PBDOT	yes	7.11226e-13 +/- 7.11226e-13			
M2	yes	0.396039 +/- 0.396039			
КОМ	yes	99.0463 +/- 99.0463			
KIN	yes	66.9501 +/- 66.9501			
JUMP1	yes	0.000593315 +/- 0.000593315			
JUMP2	yes	0.000592716 +/- 0.000592716			
JUMP3	yes	0.000593452 +/- 0.000593452			
JUMP4	yes	0.000619147 +/- 0.000619147			

 $\bullet \bullet \bullet$

irfu

cea

PTA - A. Petiteau - WS GW & QGP phase transition – CEA/IRFU/DPhN - 12 December 2024

Cea

Pulsar noises

White noise :

• $\sigma_{\text{scaled}}^2 = \text{EFAC}^2 \times \sigma_{\text{original}}^2 + \text{EQUAD}^2$. with $\sigma_{\text{original}}^2$ the original errorbars

Red noises:

$$S_{k} = \frac{A^{2}}{12\pi^{2}} \frac{K_{scale}}{\nu^{-k}} \left(\frac{f}{1\text{yr}}\right)^{-\gamma} \frac{\text{yr}^{3}}{T_{span}}$$

with u the observation frequency

+2

+2

+2

https://arxiv.org/abs/2306.16225

- RN: standard red noise (k = 0)
- DM: Dispersion Measure variations (k = 2)
- SV: scattering variations (k = 4)
- Specific features for some pulsar: exponential dips

cea

Pulsar timing and GWs

PTA - A. Petiteau - WS GW & QGP phase transition – CEA/IRFU/DPhN - 12 December 2024

cea

Pulsar timing and GWs

 When gravitational waves (GWs) are passing between pulsar and Earth, they will slightly modified the arrival time of pulses, i.e. the TOA

cea

- When gravitational waves (GWs) are passing between pulsar and Earth, they will slightly modified the arrival time of pulses, i.e. the TOA
- We have a model for the TOA

Cea

- When gravitational waves (GWs) are passing between pulsar and Earth, they will slightly modified the arrival time of pulses, i.e. the TOA
- We have a model for the TOA
- If GWs => deviation from the model
 - => GWs observed in the residuals = data model

cea

cea

Pulsar timing and GWs

GWs => correlated fluctuations in TOAs of multiple pulsars

Observed & emitted pulsar spin frequency

$$\delta t_{GW}(t_a) = \int_{t_e}^{t_a} \frac{\nu(t') - \nu_0}{\nu_0} dt' = \int_{t_e}^{t_a} \frac{\delta \nu(t')}{\nu_0} dt'$$

Emission & reception times of pulses

Pulsar & GW source sky location

 $\Delta h_{ij} = h_{ij}(t_e) - h_{ij}(t_a)$

GW characteristic strain

irfu

Cea

Cea

Pulsar timing and GWs

 For an isotropic GW background, characteristic spatial correlation: Hellings-Down curve: specific relation between correlation of 2 pulsar and their angular separation => signature of GW Background

$$\Gamma_{\text{GWB}}(\zeta_{IJ}) = \frac{3}{2} x_{IJ} \ln x_{IJ} - \frac{x_{IJ}}{4} + \frac{1}{2} + \frac{1}{2} \delta x_{IJ} \quad \text{with} \quad x_{IJ} = [1 - \cos(\zeta_{IJ})]/2$$

PTA - A. Petiteau - WS GW & QGP phase transition – CEA/IRFU/DPhN - 12 December 2024

Correlated signals

- Solution 3 potential types of signal correlated between pulsars:
 - Quadrupole:
 - Gravitational waves
 - Dipole:
 - Systematic in the model of the position of the Earth, i.e. solar system ephemeris
 - Monopole:
 - Clock time errors

log10_A=-15.08, gamma=-0.67

h (individual sources)

 10^{-8}

Frequency (Hz)

GW sources in the nHz band

Supermassive black hole binaries

- Ex: chirp mass = $10^9 M_{Sun}$, 1000 years before merger
- Very massive: masses $> 10^7 M_{Sun}$,
- Close: distance z<2,
- Quasi-monochromatic
- Large number of sources:
 - Individual sources

© Nicole Rager Fulle

© Binétruy et al.

10-14

© Mikel Falxa & Alberto Sesana

Strain amplitude

C Binétruy et al

GW sources in the nHz band

Supermassive black hole binaries

- Ex: chirp mass = $10^9 M_{Sun}$, 1000 years before merger
- Very massive: masses $> 10^7 M_{Sun}$,
- Close: distance z<2,
- Quasi-monochromatic
- Large number of sources:
 - Individual sources

- "Stochastic" background built from large number of non-resolved sources
- Stochastic GW background (SGWB) from cosmological origin:
 - First order phase transition
 - Cosmic strings
 - Primordial GWs

PTA - A. Petiteau - WS GW & QGP phase transition — CEA/IRFU/DPhN - 12 December 2024

Cea

GWs from phase transition

- During 1st order transition phase, "bubbles" collisions create GWs with a wavelength depending on the size of the Universe at the time of the transition => SGWB
- ► QCD => nanoHz
- Typical model: 2 components (Caprini et al. 2010):
 - Bubbles collisions
 - Kinetic energy of the turbulent motions and magnetic fields sustained by the MHD turbulence.
- Example of a model (Robert Pol et al. 2022): magnetic fields and bulk fluid motions in the early universe
 - => SGWB generated during phase transition
 => PTA can constrain: temperature generation,
 magnetic field amplitude and magnetic field
 characteristic scale.
- More details in Hippolyte's talk

EPTA

- European collaboration:
 - Nancay RT(FR),
 - Effelsberg RT(G),
 - Jodrell Bank Obs. (UK),
 - Westerbork Synthesis RT(NL),
 - Sardinia RT(I).

IPIA

- Two others collaborations
 - Parkes PTA (Australia) ightarrow
 - Parkes radiotelescope
 - NANOGrav (USA):
 - Arecibo
 - Green Bank
- Recent collaborations:
 - InPTA: GMRT, ORT (Inde) ullet
 - CPTA: FAST, ... (Chine) ightarrow
 - MeerKAT (Afrique du Sud) \bullet

PULSAR

1444

irfu

Worldwide collaboration: International PTA

PTA collaborations

The International Pulsar Timing Array

NANOGrav

EPTA

19

From NANOGrav's website

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:

cea

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:
 - Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:
 - 1. <u>Building Time of Arrival (TOA)</u>: processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;

TOA

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:
 - Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;

Pulsar 1

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:
 - Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
 - Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar (~20 parameters) and the noise model (~10 models with about ~20-40 parameters each);

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:
 - Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
 - Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar (~20 parameters) and the noise model (~10 models with about ~20-40 parameters each);

Pulsar 2

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:
 - Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
 - Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar (~20 parameters) and the noise model (~10 models with about ~20-40 parameters each);

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:
 - Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
 - Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar (~20 parameters) and the noise model (~10 models with about ~20-40 parameters each);
 - 3. <u>Global analysis:</u> processing of all pulsars TOAs to estimate parameters of GW signals and global noises (multiple types of signal; from 2 to 100 parameters) allowing some variations of some of the individual pulsar noise parameters.

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:
 - Building Time of Arrival (TOA): processing of the raw data taken during one observation to extract the TOA of the pulse with extremely high precision;
 - Single pulsar analysis: processing of all TOAs for a given pulsar to estimate the parameters of the pulsar (~20 parameters) and the noise model (~10 models with about ~20-40 parameters each);
 - 3. <u>Global analysis:</u> processing of all pulsars TOAs to estimate parameters of GW signals and global noises (multiple types of signal; from 2 to 100 parameters) allowing some variations of some of the individual pulsar noise parameters.
- Several tools for each steps developed either locally or within the international collaboration

- (Step 3) Global analysis:
 - Systematics: ephemerides, clock stability, ...
 - Bayesian analysis:

$$p(\delta t \,|\, \vec{\theta}) = \frac{1}{\sqrt{det(2\pi\Sigma)}} exp\left(-\frac{1}{2}\delta t^T \Sigma^{-1} \delta t\right)$$

- Continuous waves (i.e. individual sources): $\delta t \rightarrow \delta t \sum_{i=1}^{N_{signals}} h_i$
- Stochastic: Σ
 - GW Background: common noise
 - Noises:
 - White noise: measurement errors + systematics
 - Red noise: low frequency noise on pulsar rotation
 - Dispersion noise due to the propagation through interstellar medium
- Timing parameters (pulsars parameters) also considered

Cea

- PTA data analysis is challenging and very demanding in term of computing resources.
- Several stages of processing:
 - 1. Building Time of Arrival (TOA)
 - 2. Single pulsar analysis
 - 3. <u>Global analysis</u>
- Ideally all the processing steps to be done simultaneously BUT the trans-dimensionality and the size of the parameter space and of the model space to explore, would be enormous and not tractable with the current methods and computing facilities.
- Methods currently used: Bayesian with hypermodel selection (MCMC & nested sampling)
- Data: 30 to 60 pulsars are currently analysed with about 5000 to 10 000 TOAs per pulsar.
- TOAs not regularly sampled => likelihood computation required the inversion of a big matrix, Σ^{-1} (~10⁵ x10⁵ but soon ~10⁶ x 10⁶).
- Current methods are performing some approximations to avoid this inversion.
- Some exploration of machine learning methods, but not yet full-scale application and very low level of maturity.

irfu

Cea

https://arxiv.org/abs/2306.16214

Bayes factor:

		DR2full		DR2full+	DR2new		DR2new+
ID	Model	ENTERPRISE	FORTYTWO	ENTERPRISE	ENTERPRISE	FORTYTWO	ENTERPRISE
1	PSRN + CURN	_	_	_	_	_	_
2	PSRN + GWB	4	5	4	60	62	65
3	PSRN + CLK	< 0.01	< 0.01	< 0.01	0.2	1.2	0.3
4	PSRN + EPH	< 0.01	$\sim 10^{-4}$	< 0.01	0.2	0.2	1.3
5	PSRN + CURN + CLK	2	1	2.7	0.8	2	1.6
6	PSRN + CURN + EPH	1	0.1	1	1	1	1.6
7	PSRN + GWB + CURN	3	3	4	27	13	25
8	PSRN + GWB + CLK	5	12	7	28	35	57
9	PSRN + GWB + EPH	3	3	3.6	33	29	43

► Acronyms:

- PSRN: Pulsar noise
- CURN: Common Uncorrelated Red Noise
- CLK: Clock Noise (monopole)
- EPH: Solar system ephemeris (dipole)
- Significance: when using only new backends, Bayes factor at 60, p-value of \approx 0.001,
 - $\gtrsim 3\sigma$ confidence => strong evidence for the existence of GWB

PTA - A. Petiteau - WS GW & QGP phase transition – CEA/IRFU/DPhN - 12 December 2024

irfu

Cea

https://arxiv.org/abs/2306.16214

Free spectrum

Posterior for GWB parameters

- GWB parameters (DR2new):
 - logarithmic amplitude: $\log_{10} A = -13.94^{+0.23}_{-0.48}$
 - spectral index: $\gamma = 2.71^{+1.18}_{-0.73}$
- No dipole and no monopole

 \geq

https://arxiv.org/abs/2306.16214

Spatial correlation: overlap reduction function

Binned

• Optimal statistic

irfu

cea

PTA - A. Petiteau - WS GW & QGP phase transition – CEA/IRFU/DPhN - 12 December 2024

https://arxiv.org/abs/2306.16214

Scrambling the sky position of pulsar, destroy the signal

Many other tests see <u>https://arxiv.org/abs/2306.16214</u>

Cea

EPTA results: GWB

 Comparison between EPTA and some Stochastic GW Backhground from cosmological origin
 Antoniadis et al., A&A June 28, 2023

EPTA results: individual sources

- Continuous GW search = Super Massive Black Hole Binary
- GW described by $8 + 2 \times N_{PSR}$ parameters:
 - Amplitude, frequency, chirp mass, sky position, inclination, polarisation, initial phase, phase at pulsar, pulsar distance
- Frequentist analysis:
 - Maximum F-statistic (equivalent to likelihood) at 4.6 nHz ightarrow

IPTA results

- Similar results from other PTA collaborations
- The origin of the signal is still to be understood.
- IPTA is working on a joined analysis :
 - All TOAs together
 - We should be able to confirm the detection and have a better characterisation soon ...
 - But complex analysis

https://arxiv.org/abs/2309.00693

Future

- Soon (2025-2026) : IPTA Data Release 3
 - Combination of 120 pulsars from almost all radio telescope in the world
 - Expected results:
 - Confirmation of the signal
 - Better characterisation
- Later (2030) : Square Kilometre Array (SKA):
 - ~100 pulsars (?) Few tens thousands of TOAs with better timing precision
 - Large improvement in sensitivity
 - => Characterise in details the signal (background and/or individual sources):
 - If SMBHBs, understand the population (seed, evolution, merger history, ...) synergy with LISA
 - If cosmological origins, measure the spectrum in details to understand "physics"
 - If individual sources, measure the waveform => test GR? understand environment of SMBHB
 - Search new sources: memory bursts (during), others ...

irfu

Thank you !

And now Hippolyte will present the GW from QCD phase transition ...

