

Pairing and Superfluidity in Neutron Stars

Michael Urban (IJCLab, Orsay, France)

in collaboration with:

Giorgio Almirante (PhD student, IJCLab, Orsay) Viswanathan Palaniappan (PhD student, IIT Madras & IJCLab) Sunethra Ramanan (IIT Madras, Chennai, India)

Outline

- Introduction: pairing in neutron stars
- ightharpoonup Screening of the pairing interaction ($V_{low-k}+Skyrme$)
- ► HFB+BMBPT approach with low-momentum interactions
- Superfluid fraction of the inner crust
- Conclusions and outlook

References:

Screening corrections: S. Ramanan & MU, PRC 98, 024314 (2018); PRC 101, 035803 (2020); EPJ ST 230, 567 (2021)

BMBPT for neutron matter: V. Palaniappan, S. Ramanan & MU, PRC 107, 025804 (2023);

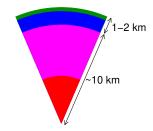
PRC 111, 035803 (2025)

Superfluid fraction: G. Almirante & MU, PRC 109, 045805 (2024); PRC 110, 065802 (2024);

PRL 135, 132701 (2025)

Basic properties of neutron stars

- ▶ Produced in core-collapse supernova explosions
- Very compact: $M\sim 1-2M_\odot$ (2 -4×10^{30} kg) in a radius of $R\sim 10$ km $\to~
 ho>$ nuclear saturation density
- ▶ Rapid rotation (periods range from seconds to milliseconds)
- ► Strong magnetic field *B* typically 10¹² G, in "magnetars" up to 10¹⁴ G
- ▶ B not aligned with the rotation axis leads to periodic e.m. emission (pulsar) and slows down the rotation
- ► A neutron star has a complex inner structure:



outer crust: Coulomb lattice of neutron rich nuclei in a degenerate electron gas

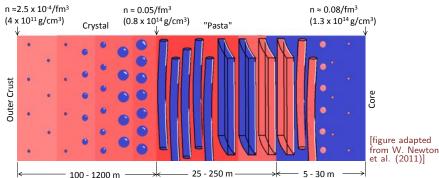
inner crust: unbound neutrons form a
neutron gas between the nuclei (clusters)

outer core: homogeneous $n, p, e^-, (\mu^-)$ matter

inner core: densities up to a few times ρ_0 , new degrees of freedom: hyperons? quark matter?

Structure of the inner crust

- Presence of a gas of unbound neutrons between the nuclei (clusters)
 + almost uniform degenerate electron gas to ensure global charge neutrality
- ▶ BCC crystal and "pasta phases": rods ("spaghetti"), slabs ("lasagne")

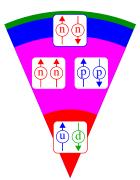


Superfluidity in neutron stars

- ightharpoonup Typical temperature of a neutron star: $T\sim 10^6-10^9~{
 m K}\sim 0.1-100~{
 m keV}$
- Compared to nuclear energy scales, this is very low!

▶ BCS gap equation:
$$\Delta_p = -\sum_{p'} \frac{V_{p,p'}}{2E_{p'}} \frac{\Delta_{p'}}{2E_{p'}}$$
 $E_{p'} = \sqrt{(\epsilon_{p'} - \mu)^2 + \Delta_{p'}^2}$

▶ Different types of superfluidity may exist in neutron stars:



inner crust:

neutron pairing in s wave (pairs with total spin S=0), $T_c \sim 1 \text{ MeV} \rightarrow \text{main subject of this talk}$

outer core:

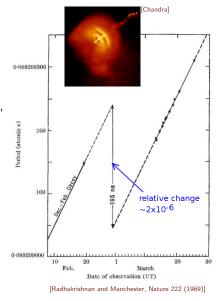
neutron pairing in p wave (pairs with total spin S=1) proton pairing in s wave

quark core (speculative):

"color superconductivity", $T_c \sim 10 \text{ MeV}$ [e.g. Alford et al. RMP (2008)]

Pulsar glitches

- ► Rotation of a neutron star: very regular, period increases slowly with time
- ► Glitch = sudden speed-up of the rotation, followed by a slow relaxation
- ➤ First glitch observed 1969 in the Vela pulsar, since then 520 glitches in 180 different pulsars [R.N. Manchester (2017)]
- Widely accepted explanation by Manchester and Itoh (1975): pinning of quantized vortices to the clusters in the inner crust
- Mhile the normal part of the star is slowing down (Ω_n) , the superfluid neutrons are spinning at constant frequency (Ω_s)
- When $\Omega_s \Omega_n$ becomes too large, the vortices get unpinned and the superfluid transfers angular momentum to the normal part

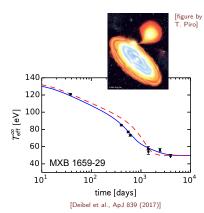


Cooling

- lacktriangle One day after the supernova, ${\cal T}$ has already dropped from $\sim 10^{11}$ to $\sim 10^9$ K
- \blacktriangleright For about 10^5 years, ν emission (from the core) is the dominant cooling mechanism
- For older stars, cooling is dominated by photon emission
- Cooper pairing affects cooling through:
 - ullet $uar{
 u}$ emission via the PBF (pair breaking and formation) mechanism,
 - strongly reduced specific heat

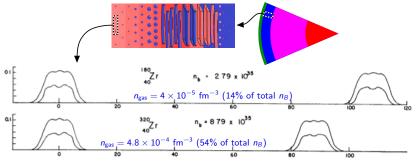
Special case: accreting neutron stars

- Neutron star with a companion star
- Matter falling on the neutron star heats the surface
- Deep crustal heating: nuclear reactions in deeper layers of the crust
- X-ray outbursts take a few weeks or months (or even years), then cooling during a couple of years of quiescence
- Particularly sensitive to Cooper pairing in the neutron-star crust



Relevant densities of "dilute" neutron matter

▶ Upper layers of the inner crust (close to neutron-drip density $\sim 2.5 \times 10^{-4}~\text{fm}^{-3}$)

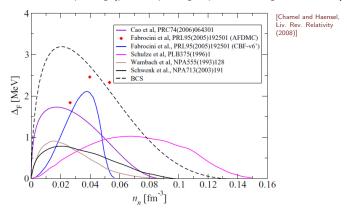


[Negele and Vautherin, NPA 207 (1973); similar results by Baldo et al., PRC 76 (2007)]

- ▶ In spite of its "low" density (still $\rho \gtrsim 10^{11}~{\rm g/cm^3}$), the neutron gas is relevant because it occupies a much larger volume than the clusters
- ▶ Deeper in the crust: $n_{\rm gas}$ increases up to $\sim n_0/2 = 0.08~{\rm fm}^{-3}$
- \rightarrow Relevant range: $n \sim 4 \times 10^{-5} \dots 0.08 \text{ fm}^{-3}$, $k_F = (3\pi^2 n)^{1/3} \sim 0.1 \dots 1.3 \text{ fm}^{-1}$

Pairing in neutron matter: results in the literature (2008)

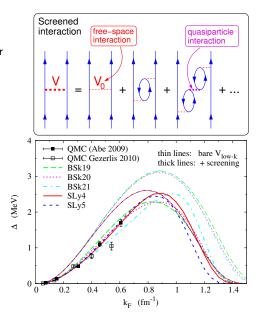
Concentrate on s-wave pairing (p-wave pairing expected at higher densities)



- Gap first increases with density (because of density of states)
 but then it decreases (because of the finite range of the interaction)
- ▶ Large corrections beyond BCS, but no consensus

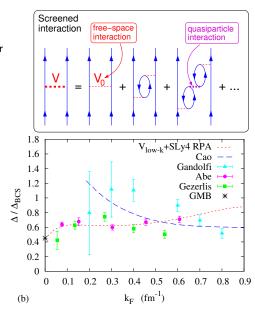
Recent progress at low densities

- Screening calculation with low-momentum interaction V_{low-k} for the pairing and Skyrme functionals for m* and the RPA [M.U. and S.Ramanan, PRC (2020), EPJ ST (2021)]
- ▶ Zoom on low density: $k_F \propto n^{1/3}$
- Necessary to scale the cutoff with k_F ($\Lambda=2.5k_F$) to recover the GMB result $\Delta/\Delta_{\rm BCS} \to 0.45$ for $k_F a \to 0$
- ▶ But inner crust involves densities up to $n \simeq 0.08 \, \mathrm{fm}^{-3} \; (k_F \simeq 1.3 \, \mathrm{fm}^{-1})$ where large uncertainties persist: m^* , quasiparticle interaction (Landau parameters), 3-body force, . . .



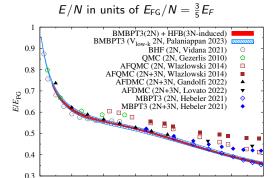
Recent progress at low densities

- Screening calculation with low-momentum interaction V_{low-k} for the pairing and Skyrme functionals for m* and the RPA [M.U. and S.Ramanan, PRC (2020), EPJ ST (2021)]
- ▶ Zoom on low density: $k_F \propto n^{1/3}$
- Necessary to scale the cutoff with k_F ($\Lambda=2.5k_F$) to recover the GMB result $\Delta/\Delta_{\rm BCS} \to 0.45$ for $k_F a \to 0$
- ▶ But inner crust involves densities up to $n \simeq 0.08 \, \mathrm{fm}^{-3} \; (k_F \simeq 1.3 \, \mathrm{fm}^{-1})$ where large uncertainties persist: m^* , quasiparticle interaction (Landau parameters), 3-body force, . . .



Description of superfluid neutron matter with BMBPT

- Goal: ab-initio description to eliminate uncertainties due to different Skyrme functionals
- ► Use chiral (N4LO) 2-body force softened with the Similarity Renormalization Group (SRG) + induced three-body force (3BF)
- Our most recent calculation:
 3rd order Bogoliubov Many-Body
 Perturbation Theory (BMBPT)
 [Palaniappan et al. PRC 111 (2025)]



0.8

 $k_{\rm F}$ [fm⁻¹]

- ► To get right asymptotics at low density, it is again necessary to scale the SRG cutoff λ with k_F (error band: residual cutoff dependence for $1.3 \le \lambda/k_F \le 2.5$)
- Even if the bare 3BF is negligible at low density, the SRG induced 3BF is necessary at $\lambda \lesssim 2.5k_F$ to reduce cutoff dependence

0.2

0.4

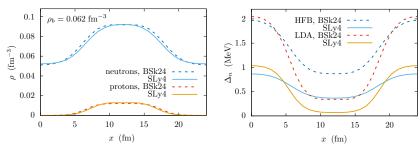
▶ Work in progress: BMBPT corrections to the pairing gap

12

14

Inhomogeneous crust vs. infinite matter calculations

- ▶ Local-density approximation: $\Delta_{\mathsf{LDA}}(r) = \Delta_{\mathsf{inf.mat.}}(\rho(r))$
- Compare with full HFB calculation for inhomogeneous crust example: "spaghetti phase" [G. Almirante and MU, PRC 110, 065802 (2024)]



- ► HFB gap of the neutron gas extends into the cluster ("proximity effect")
- ► HFB gap shows much less variations than the LDA one
- ▶ LDA reproduces quite well the HFB gap in the gas

Superfluid fraction (entrainment)

ightharpoonup Current in a uniform superfluid (T=0):

$$j=nrac{\hbar}{2m}
abla\phi$$
 where $\Delta=|\Delta|e^{i\phi}$

assuming that ϕ varies only on large enough length scales

In a non-uniform system, define superfluid and normal densities n_S and n_N in terms of coarse grained quantities \bar{j} , v_S , $\bar{\phi}$, \bar{n} such that:

$$\bar{j} = n_S v_S + n_N v_N$$
 with $n_S + n_N = \bar{n}$

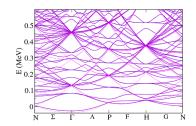
 $v_{N}=$ velocity of the inhomogeneities, $v_{S}=rac{\hbar}{2m}
ablaar{\phi}=$ superfluid velocity

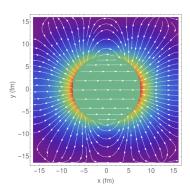
- ▶ If the system is non-uniform, then $n_S < \bar{n}$ even at T = 0 [A. Leggett, J. Stat. Phys. 93, 927 (1998)]
- ▶ Some of the particles are "entrained" by the motion of the inhomogeneities
- Superfluid fraction n_S/\bar{n} is crucial for glitches (also relevant for cooling): large Vela glitches require substantial superfluid fraction in the inner crust

Band theory vs. hydrodynamics

- Normal band theory [N. Chamel & P. Haensel, Liv. Rev. Relativity 11 (2008)] analogous to band theory in solids valid for weak coupling $(\Delta \to 0)$
 - Superfluid hydrodynamics [N. Martin & MU, PRC 94 (2016)] assume also microscopic current j and microscopic phase ϕ fulfil $j=n\frac{\hbar}{2m}\nabla\phi$ valid for strong coupling

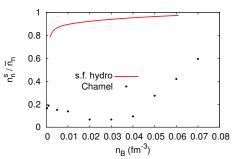
$$\xi \propto \frac{k_F}{\pi m \Lambda} \ll L$$

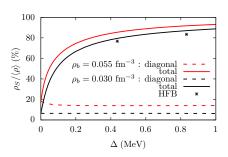




Vela glitch puzzle and its solution

- Normal band theory predicts much stronger suppression of superfluid fraction than superfluid hydrodynamics
- With the band theory result, one would have to include also the core to explain observed Vela glitches
- Full HFB calculation (including bands) interpolates between these two extremes [G. Almirante & MU, PRC 110 (2024)]
- Reason for failure of normal band theory: neglect of non-diagonal terms in the linear response formula
 [G. Almirante & MU, PRL 135 (2025)]
 ("geometric contribution" in multiband superconductors)
- Superfluid fraction depends on the value of the gap!





Conclusions

- Superfluidity has important observational consequences in neutron stars, but difficult to pin down the values of Δ or T_c from observations
- \blacktriangleright At low densities: screening reduces the s-wave gap by a factor of \sim 0.6 compared to BCS
- Large uncertainties at the highest densities of the inner crust
- ► HFB+BMBPT with low-momentum interactions as in nuclear structure: convergence for dilute neutron matter
- Band-theory HFB calculations for the inhomogeneous inner crust
- ▶ New results for the superfluid fraction: Vela glitch puzzle solved

Outlook

- ▶ Need detailed cooling calculations to relate pairing gap to observations
- ▶ BMBPT calculation of the gap with SRG interaction
- Include 3BF (induced and bare) in the calculation of the gap
- How to include beyond mean-field effects in the inhomogeneous inner crust?
- ▶ Outer core: role of protons? *p*-wave pairing?

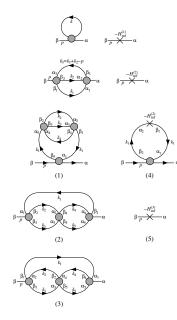
Backup slides

Testing nuclear-physics techniques with cold atoms

- Quantum Monte-Carlo (QMC): used in cold atoms and neutron matter reproduces ξ, Δ, U, ...in the unitary limit
- ► Let's try Bogoliubov Many-Body Perturbation Theory (BMBPT)
- ▶ Soften the interaction \Leftrightarrow finite cutoff Λ
- V_{low-k}-like s-wave interaction V(q, q') that reproduces the phase shifts of the contact interaction for q < Λ [MU & S. Ramanan, PRA 103, 063306 (2021)]
- Nambu-Gor'kov formalism:

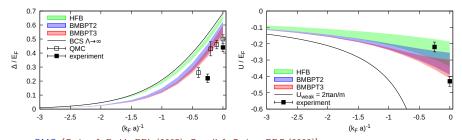
$$2 \times 2$$
 self-energy $\Sigma = \begin{pmatrix} U & \Delta \\ \Delta & -U \end{pmatrix}$

▶ Better don't start from the HFB (Hartree-Fock-Bogoliubov) ground state but from a reference state with corrected gap (counterterms shown as ×)



BMBPT3 results for Δ and U [S. Ramanan & MU, in preparation]

▶ Vary cutoff in the range $1.5k_F \le \Lambda \le 2.5k_F$: cutoff dependence as indicator for missing contributions (induced 3-body force, higher orders of BMBPT)

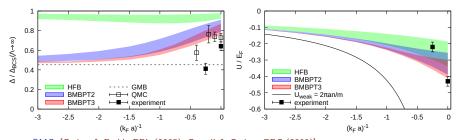


QMC: [Carlson& Reddy PRL (2005), Gezerlis& Carlson PRC (2008)]; exp: [Schirotzek et al. PRL (2008)]; GMB: [Gor'kov & Melik-Barkhudarov JETP (1961)]

- ▶ Weak coupling: $\Delta \to (4e)^{-1/3} \Delta_{\rm BCS} \approx 0.45 \Delta_{\rm BCS}, \qquad U \to \frac{4\pi a}{m} n_\sigma$
- ► At 3rd order, the gap has corrections from many effects: effective mass, *Z* factor, quasiparticle interaction in the screening, vertex correction, . . .

BMBPT3 results for Δ and U [S. Ramanan & MU, in preparation]

▶ Vary cutoff in the range $1.5k_F \le \Lambda \le 2.5k_F$: cutoff dependence as indicator for missing contributions (induced 3-body force, higher orders of BMBPT)



QMC: [Carlson& Reddy PRL (2005), Gezerlis& Carlson PRC (2008)]; exp: [Schirotzek et al. PRL (2008)]; GMB: [Gor'kov & Melik-Barkhudarov JETP (1961)]

- ▶ Weak coupling: $\Delta \to (4e)^{-1/3} \Delta_{\rm BCS} \approx 0.45 \Delta_{\rm BCS}, \qquad U \to \frac{4\pi a}{m} n_\sigma$
- ▶ At 3rd order, the gap has corrections from many effects: effective mass, *Z* factor, quasiparticle interaction in the screening, vertex correction, . . .

Hartree-Fock-Bogoliubov (HFB) with periodicity

HFB can interpolate between normal band theory in weak coupling and superfluid hydrodynamics in strong coupling

$$\begin{pmatrix} \mathbf{h} - \mu & -\Delta \\ -\Delta^{\dagger} & -\overline{\mathbf{h}} + \mu \end{pmatrix} \begin{pmatrix} U_{\alpha}^{*} \\ -V_{\alpha} \end{pmatrix} = E_{\alpha} \begin{pmatrix} U_{\alpha}^{*} \\ -V_{\alpha} \end{pmatrix}$$

working in momentum space: $h_{\vec{p}\vec{p}'} = \frac{\vec{p}^2}{2m} \delta_{\vec{p}\vec{p}'} + U_{\vec{p}\vec{p}'}$

mean field: $U_{\vec{p}\vec{p}'} = -\sum_{\vec{q}\vec{q}'} V_{\vec{p}\vec{q}\vec{p}'\vec{q}'} \rho_{\vec{q}'\vec{q}}$ (Skyrme functional)

gap: $\Delta_{\vec{p}\vec{p}'} = -\sum_{\vec{q}\vec{q}'} V_{\vec{p}\vec{p}'\vec{q}'\vec{q}} \kappa_{\vec{q}'\vec{q}}$ (separable interaction $\sim V_{\mathsf{low}-k}$)

Periodicity: example: 1D case (lasagna)

$$p_{x} = n_{x} \frac{2\pi}{I} + k_{x}$$
, with $n_{x} \in \mathbb{Z}$, $k_{x} \in (-\frac{\pi}{I}, \frac{\pi}{I}]$

 \rightarrow HFB matrix is diagonal in k_x (Bloch momentum), p_y , and p_z , non-diagonal only in discrete index n_x

Hartree-Fock-Bogoliubov (HFB) with periodicity

HFB can interpolate between normal band theory in weak coupling and superfluid hydrodynamics in strong coupling

$$\begin{pmatrix} h - \mu & -\Delta \\ -\Delta^{\dagger} & -\bar{h} + \mu \end{pmatrix} \begin{pmatrix} U_{\alpha}^{*} \\ -V_{\alpha} \end{pmatrix} = E_{\alpha} \begin{pmatrix} U_{\alpha}^{*} \\ -V_{\alpha} \end{pmatrix}$$

working in momentum space: $h_{\vec{p}\vec{p}'} = \frac{\vec{p}^2}{2m} \delta_{\vec{p}\vec{p}'} + U_{\vec{p}\vec{p}'}$

mean field: $U_{\vec{p}\vec{p}'} = -\sum_{\vec{q}\vec{q}'} V_{\vec{p}\vec{q}\vec{p}'\vec{q}'} \rho_{\vec{q}'\vec{q}}$ (Skyrme functional)

gap: $\Delta_{\vec{p}\vec{p}'} = -\sum_{\vec{q}\vec{q}'} V_{\vec{p}\vec{p}'\vec{q}'\vec{q}} \kappa_{\vec{q}'\vec{q}}$ (separable interaction $\sim V_{\text{low}-k}$)

Periodicity: 3D crystal with primitive reciprocal lattice vectors \vec{b}_i

$$\vec{p} = n_1 \vec{b}_1 + n_2 \vec{b}_2 + n_3 \vec{b}_3 + \vec{k}$$
, with $n_i \in \mathbb{Z}$, $\vec{k} \in \mathsf{BZ}$

 \rightarrow HFB matrix is diagonal in \vec{k} (Bloch momentum), non-diagonal in discrete indices n_i

Band structure: example for a simple cubic cell

- In principle, diagonalization must be done for all $\vec{k} \in \mathsf{BZ}$
 - (in practice only for a finite number of integration points)
- Diagonalizing only h: single particle bands

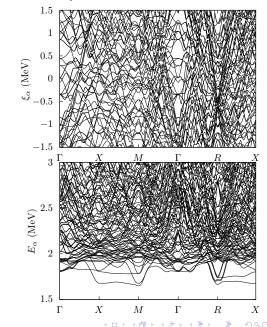
$$\xi_{\alpha,\vec{k}} = \epsilon_{\alpha,\vec{k}} - \mu$$

Diagonalizing full HFB matrix: quasiparticle bands

$$E_{\alpha,\vec{k}} \gtrsim \Delta$$

 $\Gamma - X - M - \Gamma - R - X = \text{path on}$ symmetry lines between special points (with $|\vec{k}| = 0, \frac{\pi}{T}, \sqrt{2}\frac{\pi}{T}, 0, \sqrt{3}\frac{\pi}{T}, \frac{\pi}{T}$)

[Fig.: G. Almirante & MU, in preparation]



Introducing a stationary flow

► Consider relative velocity

$$ec{v}=ec{v}_N-ec{v}_S$$
 $(ec{v}_S=rac{\hbar}{2m}ec{
abla}ar{\phi})$

between clusters and superfluid

in the rest frame of the superfluid

- ▶ In the rest frame of the superfluid:
 - $ightharpoonup \Delta = |\Delta|e^{i\phi}$ is periodic
 - ▶ Hamiltonian $h \rightarrow h \vec{p} \cdot \vec{v}$ (additional term does not destroy periodicity)

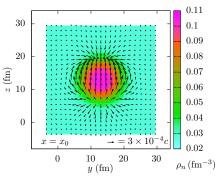
- ▶ Make sure that v is small enough to be in the linear regime (no pair breaking)
- ► Estimate v just before a Vela glitch ($\delta\Omega\simeq 10^{-2}-10^{-1}~{\rm s}^{-1}~{\rm [Ruderman,\ ApJ\ 203\ (1976)]}$):

$$egin{aligned} v &= R_{ extsf{NS}} \delta\Omega \simeq rac{R_{ extsf{NS}}}{12 ext{ km}} imes 4 imes (10^{-7} - 10^{-6})c \ &\ll v_{ extsf{Landau}} \simeq rac{\Delta}{\hbar k_F} \simeq rac{\Delta}{1 ext{ MeV}} imes rac{1.3 ext{fm}^{-1}}{k_F} imes 4 imes 10^{-3}c \end{aligned}$$

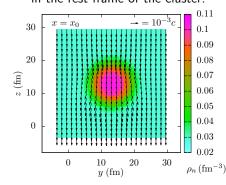
Density and current in 3D (BCC crystal)

Neutron density ho_n and velocity $\vec{v}_n = \vec{j_n}/
ho_n$ in a cut through the cluster

in the rest frame of the superfluid:



in the rest frame of the cluster:



[G. Almirante and MU, in preparation]

$$\rho_b = 0.033 \text{fm}^{-3}, L = 33 \text{fm}, \rho_S/\bar{\rho}_n = 92\%$$