

Cherenkov background in DS-20k

DarkSide CPPM meeting

From my master's thesis in Rome – Sapienza University (here)

Manuel Pronesti 05/12/2024

DarkSide-20k high mass sensitivity

5cm

BACKGROUND SOURCES:

- 1. Nuclear recoils
 - Neutrons (radiogenic, cosmogenic or from (α, n) reactions)
 - Neutrinos (CEvNS from atmospheric v)
- 2. Electron recoils
 - γ-rays (from bulk of materials)
 - ³⁹Ar
- 3. Outliers
 - Random coincidence between α and unresolved S1+S2
 - Cherenkov

REJECTION TOOLS

Fiducialization Irreducible bkg

PSD (see next slide) PSD + use of UAr

Fiducialization + algorithms (?) Fiducialization + algorithms (?)

- Background budget:
- Fiducial volume: 0.1 n in 10 y (+ 3.2 v)
- Extended volume: 12.8 n in 10 y (+ 7.4 ν)

Pulse Shape Discrimination (PSD):

Singlet-to-triplet state ratio in excited dimer Ar_2^* : 0.7 for NRs and 0.3 for ERs.

PSD variable: $f_{200} = \frac{S1 \text{ in } 200 \text{ ns}}{S1}$

Rejection power 10^9

PE = photoelectron Light yield: 10 PE/keVee released

TPC walls

Major activities from Gd-PMMA and SiPMs

to reduce α emissions. γ rays scattering on acrylic produce fast electrons that produce **Cherenkov**

depositing on ESR

Cherenkov background in DarkSide-20k

CPPN

Dangerous background only if the electron emits Cherenkov radiation in the acrylic;

In LAr it would lose all its energy, leaving a signal too large for a WIMP

Background estimate from MonteCarlo

Bigger Cherenkov contributors due to high-energy γ rate and overall activity: ²³²Th and ⁴⁰K

SINGLE CLUSTER TOPOLOGY 1.

ROI events predicted (conservative estimate) in 10 y for fiducial volume analysis:

- 232 Th: $(2.4 \pm 1.2) \times 10^{-3}$ 40 K: $(7.7 \pm 8.6) \times 10^{-4}$ Negligible w.r.t. neutrons

ROI events predicted (from MC counting) in 10 y for extended volume analysis:

- ²³²Th: 29.0 ± 20.5]
- 40 K: 0.56 ± 0.72

Comparable with neutrons

g4ds10 data (old detector configuration)

2. PILE-UP TOPOLOGY

ROI events predicted (from MC counting) in 10 y for 232 Th :

- Fiducial volume: $(8.53 \pm 0.58) \times 10^{-3}$ •
- Extended volume: $(5.67 \pm 0.48) \times 10^{-2}$ •

Negligible w.r.t. neutrons

Mitigation strategy

Cherenkov photons are emitted in a cone of light, whereas scintillation photons are emitted isotropically. The presence of clusters can be described by:

Strategy:

- 1. Build S1MaxFrac vs S1 without Cherenkov
- 2. For each S1 bin, determine the S1MaxFrac limit value that contains 99% of the signal
- 3. Hyperbolic fit: $f_{th}(S1) = \frac{p_0}{S1+p_1} + p_2$ in the range 50 PE < S1 < 290 PE
- 4. Events with S1MaxFrac > $f_{th}(S1)$ are rejected

S1MaxFrac for scintillation photons $\times 10^{3}$ S1MaxFrac s1maxfracscint vs npes Entries 1906737 0.9 30 334.3 Mean x Mean v 0.01499 0.8 148.5 Std Dev > 25 0.02002 Std Dev 0.7 limit values 0.6 20 - fit 0.5 15 0.4 10 200 300 400 500 600 51 [PE]

Rejection results (1/2)

Cluster coordinates - Extended volume ROI

Cluster coordinates - Extended volume ROI

Fraction of rejected events (after PSD):

- Fiducial volume analysis: $(59.1 \pm 7.6)\%$ for single cluster, $(92.2 \pm 9.0)\%$ for ³⁹Ar pile-up
- Extended volume analysis: $(60.5 \pm 9.4)\%$ for single cluster, $(93.4 \pm 11.7)\%$ for ³⁹Ar pile-up

Next steps

Future simulations are needed to update the sensitivity curve. They should have:

- More statistics to reduce fluctuations and to build signal efficiency vs rejection power curves (here the signal efficiency was fixed to 99%)
- **Updated geometry** (baseline configuration for the TPC walls to decrease significantly Cherenkov background and g4ds11 update)
- Other major Cherenkov sources, such as SiPMs
- Readout planes **noise effects**

Thanks for your attention

BACKUP SLIDES

WIMPs search

Several DM evidences: rotation curves of spiral galaxies, Bullet Cluster, CMB's power spectrum etc.

Weakly Interacting Massive Particles (WIMPs): One of main DM particle candidates

- Broad mass range: sub-GeV to tens of TeV
- Interactions: gravity and any as weak (or weaker) than weak nuclear force
- Direct detection: WIMP-OM nucleus coherent elastic scattering

Rate depending on the WIMP velocity distribution (plot based on Standard Halo Model)

Liquid argon properties

The excited dimer Ar_2^* exists in 2 states:

• Singlet ${}^{1}\Sigma_{u}^{1}$ state, $\tau \simeq 7$ ns

• Triplet ${}^{3}\Sigma_{u}^{1}$ state, $\tau \simeq 1.3$ μs

Singlet-to-triplet ratio: ~ 0.7 for NRs and ~ 0.3 ERs It allows Pulse Shape Discrimination (PSD)

S1MaxFrac plots

S1MaxFrac before and after f200 rejection

Efforts for improvement (1/2)

2. Temporal information:

Cherenkov photons tend to reach the optical plane before scintillation photons \rightarrow consider only early photons S1MaxFracEarly = S1MaxFrac|_{for the first 30% photons}

Strong improvement in rejection power, e.g. for fiducial volume analysis:

- From $(59.1 \pm 7.6)\%$ to $(76.2 \pm 9.0)\%$ for single cluster topology
- From $(92.2 \pm 9.0)\%$ to $(93.2 \pm 9.1)\%$ for pile-up topology

No significant evidence of differences varying the cut-off fraction between 10% and 40%, due to large statistical errors.

The introduction of a gaussian smearing of order 10 ns to emulate **time resolution leads to a dramatic decline in rejection power** for the single cluster topology: from $(76.2 \pm 9.0)\%$ to $(37.8 \pm 5.6)\%$, worse than original S1MaxFrac.

Alternative version where the time cutoff is fixed: S1MaxFracPrompt200 = S1MaxFrac $|_{for time < 200 ns}$ After time resolution, results are still worse than original S1MaxFrac

CHIEFE DE PHYSIQUE DES BARTICUES DE MARGELE CPPM

Cherenkov background in DarkSide-20k

Manuel Pronesti

Conservative estimate: PSD survival probability anticorrelated with probability γ reaching inner region

	Fiducial volume analysis		Extended volume analysis	
	$ $ 232 Th	40 K	²³² Th	40 K
Single cluster MC events	$(1.907 \pm 0.001) \times 10^{6}$	$(8.676 \pm 0.009) \times 10^5$	$(1.907 \pm 0.001) \times 10^{6}$	$(8.676 \pm 0.009) \times 10^5$
MC ROI events (w/o fid.)	164 ± 10	1 ± 1	109 ± 10	1 ± 1
MC ROI events (w/ fid.)	0	0	2.0 ± 1.4	0.018 ± 0.023
Push-up probability	$(8.60 \pm 0.67) \times 10^{-5}$	$(1.2 \pm 1.2) \times 10^{-6}$	$(5.72 \pm 0.55) \times 10^{-5}$	$(1.2 \pm 1.2) \times 10^{-6}$
ROI events predicted in 10 y	$(2.4 \pm 1.2) \times 10^{-3}$	$(7.7 \pm 8.6) \times 10^{-4}$	4.56 ± 0.65	2.2 ± 2.2
ROI events expected in 10 y		/	29.0 ± 20.5	0.56 ± 0.72

05/12/2024

²³² Th dataset	Fiducial volume analysis	Extended volume analysis
³⁹ Ar MC events	$(6.00 \pm 0.08) \times 10^5$	$(6.00 \pm 0.08) \times 10^5$
MC ROI events	216 ± 14	140 ± 12
MC ROI events with fiducialization	87 ± 9	128 ± 11
Push-up probability	$(3.60 \pm 0.24) \times 10^{-4}$	$(2.33 \pm 0.20) \times 10^{-4}$
ROI events predicted in 10 y	$(8.53 \pm 0.58) \times 10^{-3}$	$(5.67 \pm 0.48) \times 10^{-2}$