PhD hours

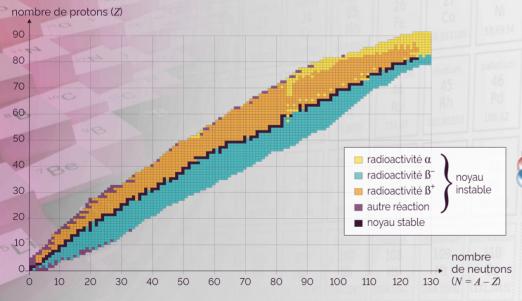
Study of exotic nuclei of interest for applied and fundamental nuclear physics with Total Absorption Gamma-ray Spectroscopy (TAGS)

Julien Pépin

Subatech (Nantes) – Instituto de Física Corpuscular (Valencia)

Supervisors:

Muriel Fallot (Subatech) Amanda Porta (Subatech) Alejandro Algora (IFIC)

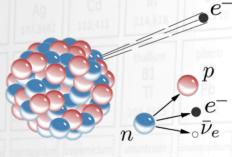


Summary

- Reminders
- Motivations
- Pandemonium effect
- TAGS technique
- Experimental setup
- Data treatment
- Physics cases

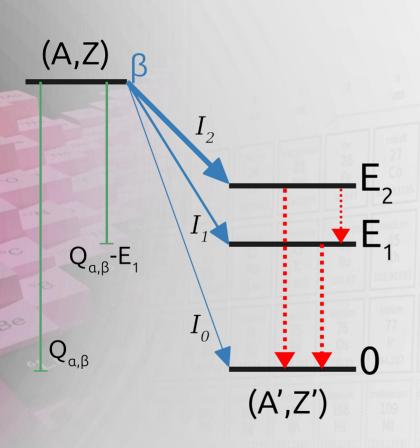
Exotic nuclei and β-decay

- Exotic nuclei = unstable nuclei far from stability valley
- Concerns a large majority of known nuclei



• Three different types of β-decay:

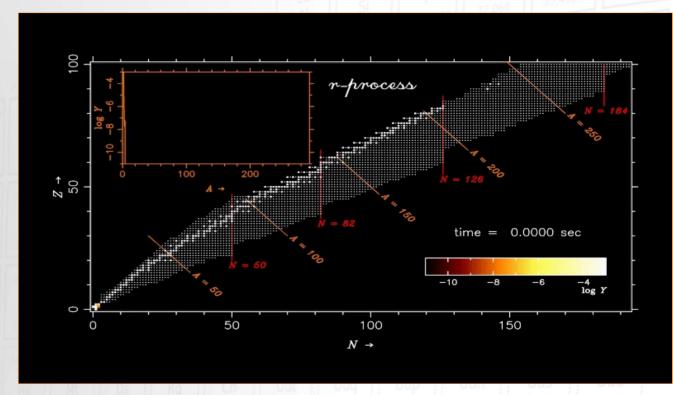
$${}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + \overline{v}_{e}$$


$$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + e^{+} + \nu_{e}$$

$$_{Z}^{A}X+e^{-}\rightarrow _{Z-1}^{A}Y+\nu _{e}$$

- Emission of β particle and corresponding ν
- Feeding to levels of daughter nucleus
- Emission of γ-rays for de-excitation to lower energy levels

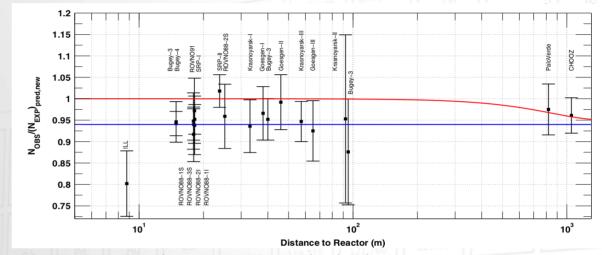
β strength and β intensity

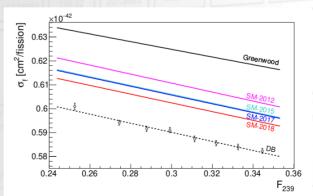

$$I_{\beta}(E_{x}) = \frac{N_{\beta}(E_{x})}{\sum_{E_{x}} N_{\beta}(E_{x})}$$

$$S_{\beta}(E_{x}) = \frac{\sum_{E_{f} \in \Delta E} \frac{1}{\Delta E} I_{\beta}(E_{f})}{f(Q_{\beta} - E_{x}) T_{1/2}}$$

- $N_{\beta}(E_x)$ = number of β decay to level E_x
- $f(Q_{\beta} E_{x})$ = Fermi integral depending on the difference of energy between the fed excited level and the Q of the decay
- $T_{1/2}$ = half-life of the mother nucleus

Nuclear astrophysics: r-process


- Nucleosynthesis process producing half of the nuclei heavier than iron
- Need very hot (T~10°K) and very neutron dense (~10²⁴/cm³) environments
- Core-collapse supernovae and binary neutron star mergers
- Competition between 3 reactions:
 - Neutron capture (n,γ)
 - Photo-disintegration (γ,n)
 - β-decay


Animation of the r-process nucleosynthesis in supernovae. Source: Shinya Wanajo, Stephane Goriely

Reactor neutrino studies

- β- decays lead to antineutrino emission
- Several fields of neutrino physics:
 - Energy spectrum computation
 - Reactor anomalies
 - Flux
 - Shape of energy distribution
 - Applied neutrino physics
 - Reactor monitoring
 - Non-proliferation

Source image: G. Mention et al. « Reactor antineutrino anomaly », Physical Review D 83, 2011

Source image: M. Estienne et al. « Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes », Physical Review Letters 123, 2019

Reactors: decay heat

- Decay of fission products from fuel ≈ 7% of operating reactor power
- Main power source after shutdown
- Better knowledge of the decay heat can lead to a better prevention of serious accident risks
- Economic reasons for fuel cooling (more important for future reactors)
- Better safety when dismantling reactors and for processing spent fuel

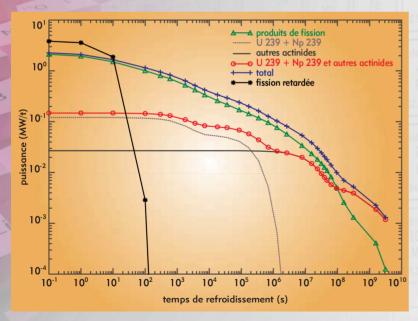
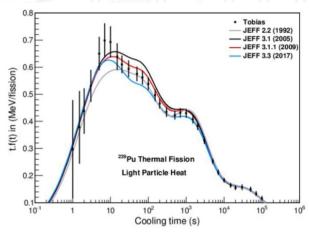
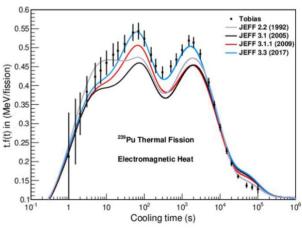
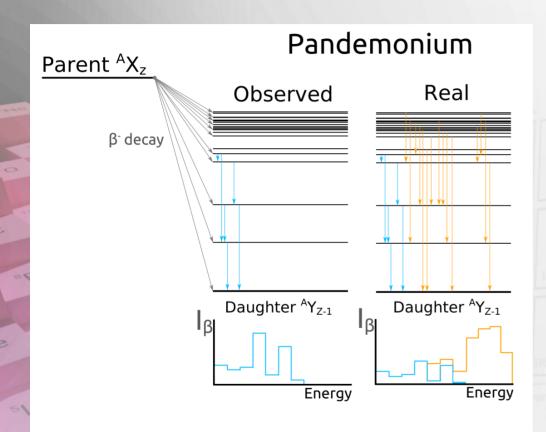




Image source : A.L. Nichols et al,"Improving fission-product decay data for reactor applications part I—decay heat", 2023



Interest of TAGS measurements

- Common points between those scientific interests: β-decay
- Study of β-decay can bring a lot of information
- Theoretical models are validated with experimental measurements
- Previous data measurements performed with high-resolution detectors (HPGe...)

Pandemonium effect

- Loss of detection efficiency affecting measurements done with highresolution detectors (e.g. HPGe)
- High energy gamma-rays are unseen.
- High multiplicity cascades are incomplete.
- Leads to an underestimation of feeding towards high energy levels.
- Leads, thereby, to an overestimation of the feeding to lower energy levels.
- More important with nuclei with high Q-value.

Total Absorption Gamma-Ray Spectroscopy

- Needs a calorimeter, 4ndetector with a material having a detection efficiency as high as possible (BaF₂, NaI...)
- Avoids pandemonium effect
- Detects all γ-rays from the de-excitation cascade
 - Energy of the detected peak should correspond to the energy of the fed level

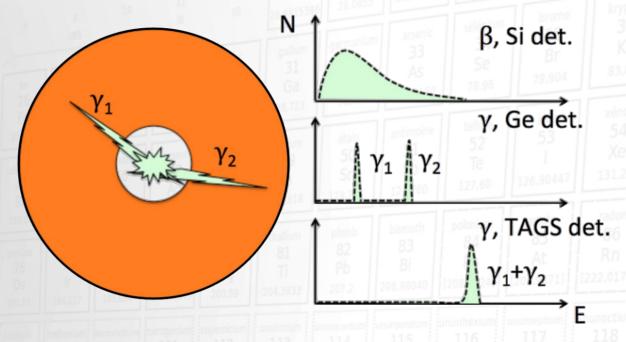
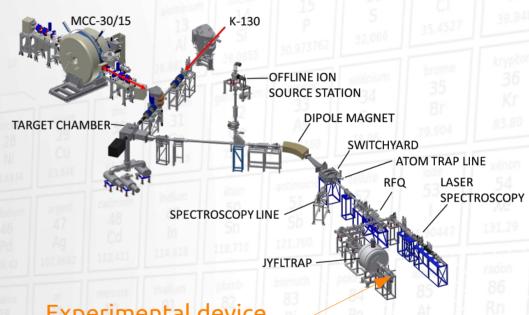
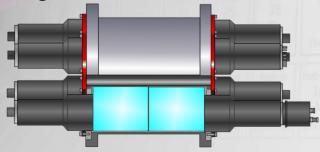
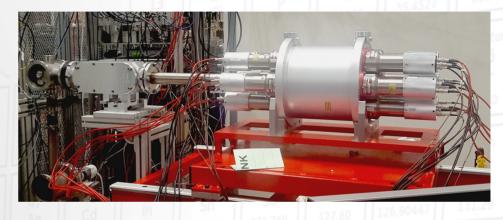



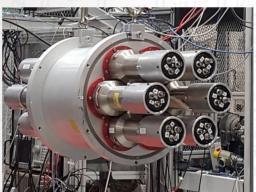
Image source : « Beta-decay studies for applied and basic nuclear physics » , A.Algora et al. The European Physical Journal A, 2021

Experimental set-up: Nuclei production

- From 7 to 29 september 2022 in Jyväskylä University, Finland, in JYFL Accelerator Laboratory
- IGISOL (Ion Guide Isotope Separation On-Line) can produce large range of stable and radioactive nuclei
- Very precise mass separation thanks to JYFLTRAP double Penning trap
- Beam implantation on a magnetic tape in the center of the detector. Rolling magnetic tape system avoids contamination of the measurement by daughter nucleus decays


Experimental device


Layout of the IGISOL facility in JYFL Accelerator Laboratory in Jyväskylä showing the path of beam particles from MCC-30/15 accelerator to JYFLTRAP. Our experimental setup was just at the end of JYFLTRAP. Image source: https://www.jyu.fi



Experimental set-up: Rocinante detector

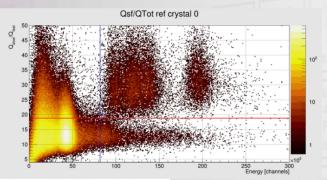
- Total Absorption spectrometer
- Composed of 12 Barium Fluoride crystals (BaF₂)
- Segmented detector for obtaining information on the multiplicity of the gamma cascade
- Plastic scintillator in the detector center used as trigger for β coincidence
- Cerium Bromine (CeBr₃) detector with higher resolution for better identification of contaminants
- Internal contamination of BaF₂ by ²³⁸U and ²³²Th leads to a characteristic α signal that can be useful for detector alignment

Rocinante detector from experiment I241 in September 2022 in Jyväskylä, Finland

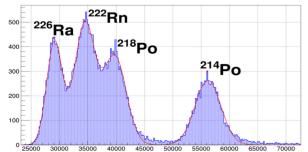
Data analysis

Data treatment

- Alignment
- Calibration
- Contaminants

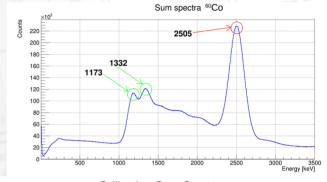

Data analysis

- Monte Carlo simulations
- Detector response matrix
- Inverse problem

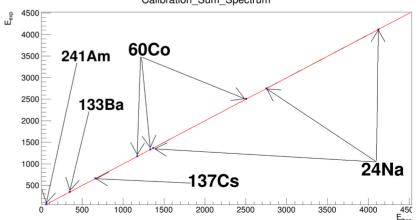

Data treatment

Alignment

- Using α events coming from internal contamination for reference
- Performing α/γ discrimination to obtain clean α peaks
- Discrimination possible thanks to two scintillation times of BaF₂:
 - 630ns (slow)
 - 0.7ns (fast)



Alpha charge distribution 1 - Slow/Fast



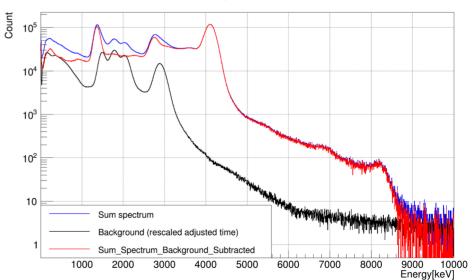
Calibration

• Compensates PMT gain drifts and make calibration more efficient • Converts channels into energy

Calibration_Sum_Spectrum

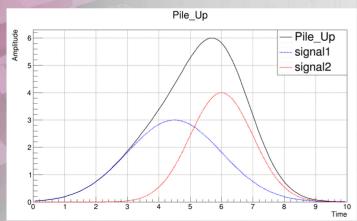
Background

Coincidence


- β/γ coincidences allow to exclude un-wanted γ -rays
- Need that the plastics has been fired by a β particle
- Depends on plastic scintillator detection efficiency
- Loss of statistics

Sum Spectrum 24Na 10³ 10² 10 Sum Spectrum 24Na 1 Sum_Spectrum_β/γ_coincidence 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Subtraction


- When coincidence is not possible (sealed calibration sources)
- Normalization according to measurement time

Pile-up/Summing

- Sum of 2 signals detected in the same time window
- Can happen in the same crystal
- Produces a signal corresponding to the sum of the 2 signals
- Frequency depends on the duration of the time window, efficiency of the detector and activity of the source/beam

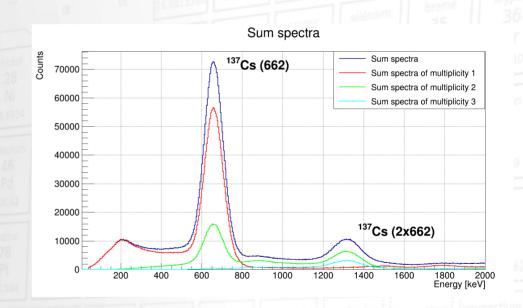
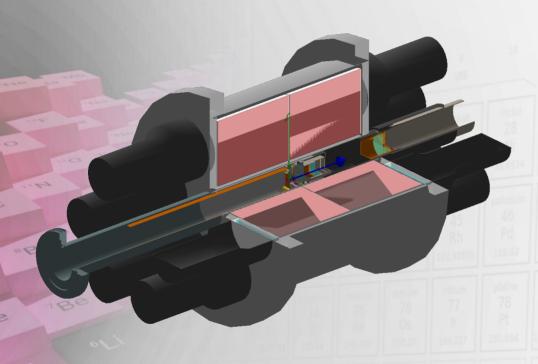


Image source : Thesis A-A Zakari

Data analysis

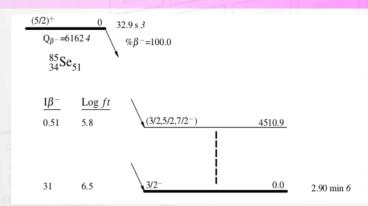

- We have to find f given d and a known R
- Solve the inverse problem represented by d = R x f
 - d = clean data
 - f = feeding
 - R = detector response matrix
- Detector response matrix is calculated from Monte Carlo simulations of the detector with GEANT4 code
- b_{jk} = branching ratio for the transition from level j to k
 - g_{jk} = response to emitted γ -ray

$$d_i = \sum_{j}^{levels} R_{ij}(B) f_j + C_i$$

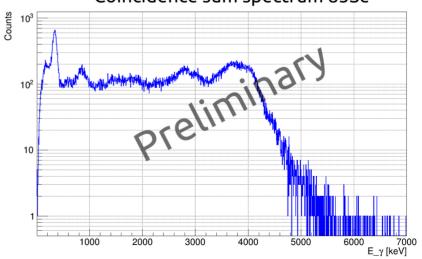
$$\mathbf{R}_j = \sum_{k=0}^{j-1} b_{jk} \mathbf{g}_{jk} \otimes \mathbf{R}_k$$

J.L.Tain, Algorithms for the analysis of b-decay total absorption spectra, Nuclear Instruments and Methods in Physics Research A 571 (2007) 728–738

Monte Carlo simulations

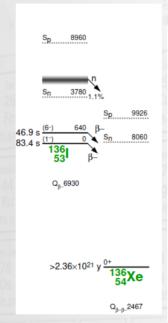

Geometry of Rocinante detector on GEANT4 simulation tookit. The CeBr₃, the tape rolling system, the beam pipe and the plastic detector have been added to previous geometry.

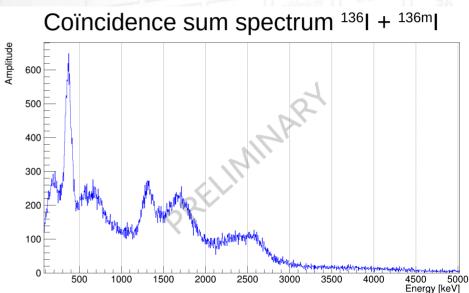
- Detector response matrix is calculated from Monte Carlo simulations of the Rocinante detector with Geant4
- Faithful representation of experimental conditions brings more precision in the calculation of the response matrix
- Updated version of an already existing geometry of this detector
- Geometry must be validated by comparing source simulation and data
- Simulation used to calculate the response to electrons and gammas from the studied nucleus


Physics case: 85Se

- 85Se identified as priority 1 by IAEA for improving the predictions of the decay heat in reactors based on 233U/232Th fuel
- 0,99 % of contribution to the total decay heat after 10 s and 1,24 % after 100s following shut down.
- Q_{β} = 6162 keV but last fed level known = 4510.9 keV
- → pandemonium candidate
- "Easy" case:
 - Neutron emission threshold above the Q_{β} value
 - No isomeric states
 - Half-life of daughter nucleus different

M. Gupta et al, "Decay Heat Calculations: Assessment of Fission Product Decay Data Requirements for Th/U Fuel" INDC International Nuclear Data Committee, INDC (NDS)-0577,2010



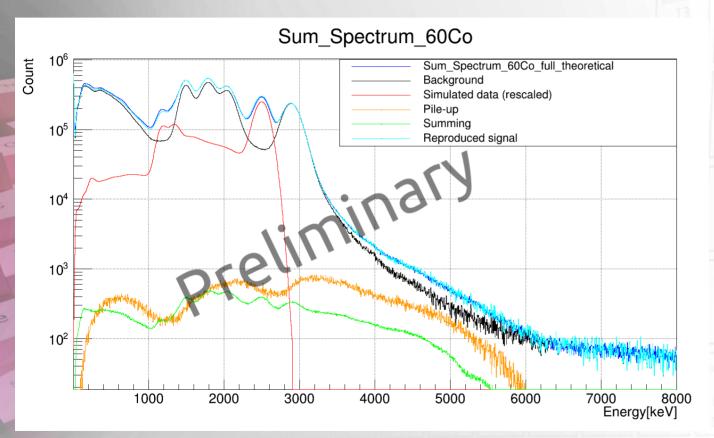

Coïncidence sum spectrum 85Se

Physics case: 1361

- 136ml is high priority with contribution to total decay heat of 1.55 % and 3.69 %, 10 and 100s after reactor shut down
- 1361 contribution to total decay heat 100s after shut down = 2.74 %
- Contribution of both into energy antineutrino spectra
- 136I involved in r-process through pygmy dipole resonance (PDR) affecting the cross-section of nuclear reactions involving photons
- 136ml highly suspected to be pandemonium, 136l moderately
- Isomeric states but different half-lives
- Daughter nucleus with long half-life, no contaminants

P.Dimitriou et A.Nichols, "Total Absorption Gamma-ray Spectroscopy for Decay Heat Calculations and Other Applications" INDC International Nuclear Data Committee, INDC (NDS)-0676,2015

Data analysis


Data treatment

- Alignment
- Calibration
- Contaminants

Data analysis

- Monte Carlo simulations
- Detector response matrix
- Inverse problem

Perspectives of the work

- Validation of the simulation
- Simulation of measured nuclei
- Extraction of the detector response matrix
- Solving the inverse problem
- Study the impact of new data

Thank you for your attention!

