

Geopolymers and Radioactive Waste Containement

Ozgur ILERI

Director

Supervisors

Abdesselam ABDELOUAS

Tomo SUZUKI MURESAN Valérie BOSSE

1

Purpose and Objectives

- Synthesis of the selected matrix
- Selecting source materials for the encapsulation matrix
- Optimization and validation
- Encapsulation of radioactive waste
- Research of a suitable matrix in agreement with Waste Acceptance Criteria (WAC)
- Validation tests

Preface

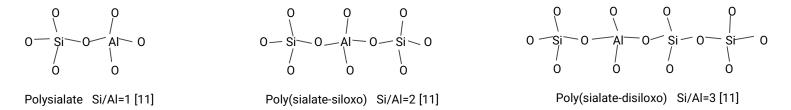
- What is radioactive waste and how is it managed?
- What is the chosen matrix? What are the precursors?
- Experiments
- Results and progress of the work

Radioactive Waste Management

Low Level Waste ^[1]

- Protective clothing, wiping rags, reactor water treatment residues, equipment, tools
- Short-lived radionuclides
 Be-7, Na-24, K-42, <10⁶
 Bq/g
- Typically does not require shielding during handling and transport
- Cementation ^[3,4]

Intermediate Level Waste [2]

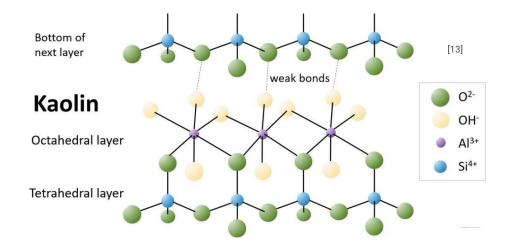

- Resins, chemical sludges, metal fuel cladding, and contaminated materials from reactor decommissioning
- May contain significant amounts of long-lived radionuclides Cs-137, Co-60, Sr-90, from 10⁶ to 10⁹ Bq/g
- Requires shielding during handling, transport and disposal
- Polymer encapsulation^[3]
- Ceramic encapsulation ^[3, 4, 5]

High Level Waste [3]

- Reprocessing waste
- Small volume, strong radioactivity
- Requires heavy shielding and cooling
- long-lived radionuclides Pu-239, U-236, Cs-135, >several billion becquerels per gram
- Requires permanent deep geological disposal
- Vitrification^[6]

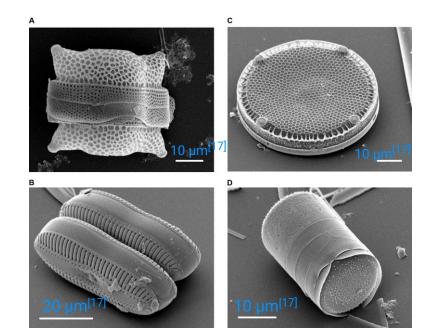
Geopolymer

Silica source	Alumina source	Activator		
<i>Diatomaceous earth^[9],</i> Rice husk ash ^[7] , <i>Sepiolite</i>	red mud ^[8] , bauxite	Lime (CaO, Ca(OH) ₂) ^[9] , NaOH ^[10] , KOH ^[10] , Na₂SiO ₃ ^[10] , K ₂ SiO ₃ ^[10]		
Fly ash ^[10] , blast furnace slag ^[10] , <i>metaka</i>				

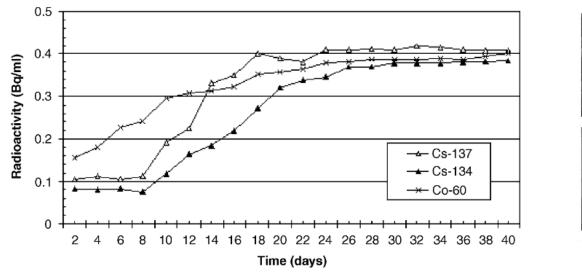


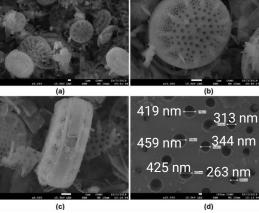
Geopolymers are inorganic materials produced by low-temperature polymerization of an aluminosilicate precursor in an alkaline solution.^[10]

Kaolin


- Clay mineral, $AI_2O_3 \cdot 2SiO_2 \cdot 2H_2O$
- One tetrahedral sheet of silica (SiO₄)
- One octahedral sheet of alumina $(AI_2O_3)^{[12]}$

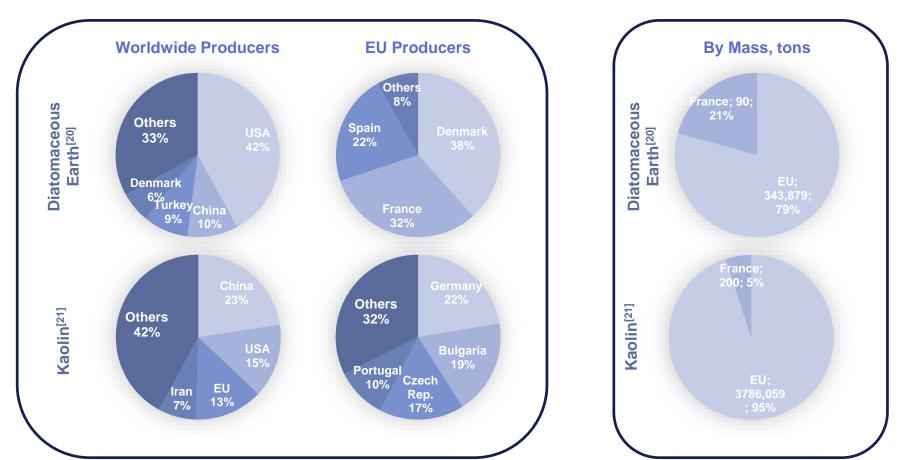
Diatomaceous Earth


- Consists of the fossilized remains of diatoms^[14]
- Siliceous sedimentary rock, usually light in color^[14]
- Increase in compressive strength in geopolymers^[10]


Composition	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	K ₂ O	MgO	Na ₂ O	TiO ₂	CaO	MnO	P_2O_5	SO3
Contents, %	67.34 ^[15]	15.51 ^[15]	2.90 ^[15]	1.52 ^[15]	2.22 ^[15]	1.43 ^[15]	0.69 ^[15]	0.79 ^[15]	0.02 ^[15]	0.16 ^[15]	0.48 ^[15]
Contents, %	86.03 ^[16]	3.01 ^[16]	2.89 ^[16]	0.69 ^[16]	0.28 ^[16]	0.19 ^[16]	0.20 ^[16]	0.76 ^[16]	0.06 ^[16]	0.15 ^[16]	[16]

the highest and lowest amounts of diatomaceous earth's chemical composition

Retention on Diatomaceous Earth

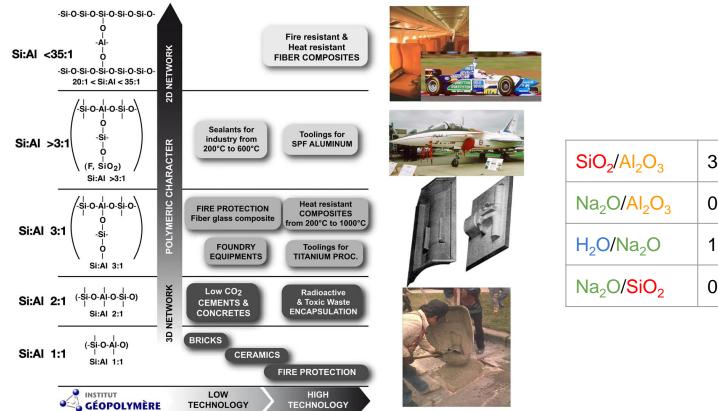

Transmitted radioactivity as a function of time [18]

SEM review of DE [19]

- 1 m³ liquid waste (Cs-137, Cs-134 and Co-60)
- Radioactivity reduced by 85% (from 2.60 bq/ml to 0.40 bq/ml)
- 100 liters of diatomite
- Subject to testing again

Raw Material Supply Chain, 2021

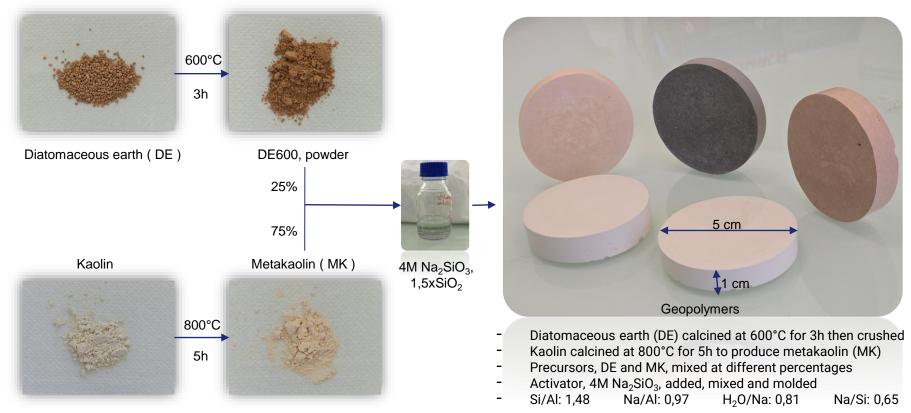
Why Geopolymer?

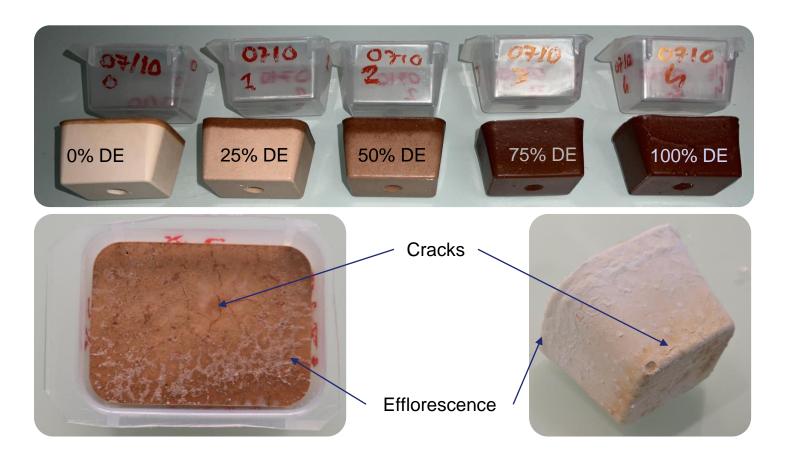

Advantages

- Lower CO₂ emissions ^[22, 23]
- Utilization of waste materials ^[22, 23, 24]
- Improved durability ^[24, 25]
- Rapid strength gain [23]
- Lower energy consumption ^[22, 26]

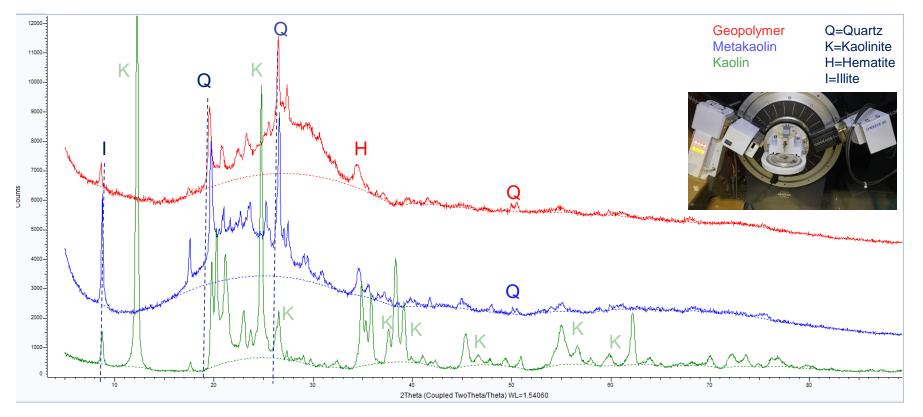
Disadvantages - Limitations

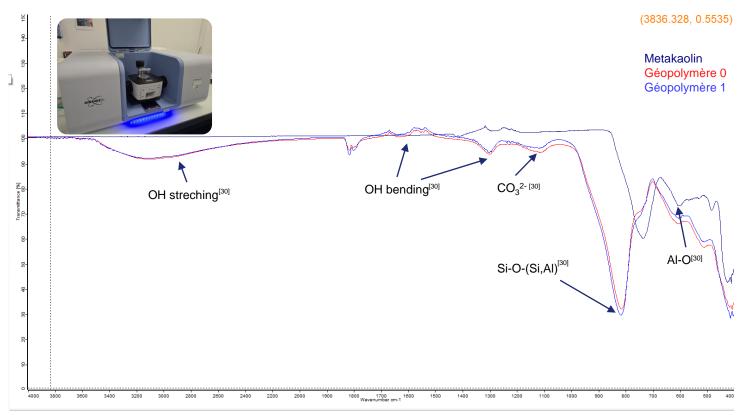
- Drying shrinkage and cracking ^[27]
- Efflorescence [27]
- Needs expertise
- Not ready for production
- Unknown reaction mechanism

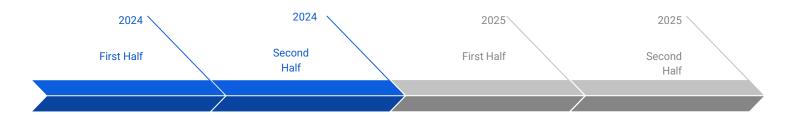

Si/Al Ratio for Geopolymer Production^[28]


[29]

SiO ₂ /Al ₂ O ₃	3.50-4.50
Na ₂ O/Al ₂ O ₃	0.80–1.20
H ₂ O/Na ₂ O	15–17.50
Na ₂ O/ <mark>SiO</mark> 2	0.20–0.28


Geopolymer Samples, Optimized


Geopolymer Samples, First Attempts


XRD Results

FTIR Results

Progress of the Work

Start

- Source material selection and characterisation

Analyses and Production

- FTIR, XRD

-

- Collaboration with POLIMI
- Formulation and optimisation tests
- First generation geopolymers

Developement

- Collaboration with l'Université Aix Marseille
- New material; Bauxite residues
- More characterization
- Mechanical tests

Recursion

More tests

THANK YOU!

Any questions?

Bibliographic

[1]Low-Level Waste | NRC.gov

[2]Multilayer Shielding Design for Intermediate Radioactive Waste Storage Drums: A Comparative Study between FLUKA and QAD-CGA

[3]IAEA-TECDOC-864 Requirements and methods for low and intermediate level waste package acceptability

[4]Disposal of Low- and Intermediate-Level Radioactive Waste [5]https://www.oecd-nea.org/brief/brief-06.html

[6] https://www.ans.org/news/article-4737/locked-in-glass-the-vitrification-of-llwstreams/Developments in the formulation and reinforcement of concrete (2008), Page

<u>32</u>

[7]Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder

[8] Leaching Behavior and Immobilization of Heavy Metals in Geopolymer Synthesized from Red Mud and Fly Ash

[9] A Review on the Incorporation of Diatomaceous Earth as a Geopolymer-Based Concrete Building Resource

[10] On the Sustainable Utilization of Geopolymers for Safe Management of Radioactive Waste: A Review

[11] Geopolymer, Green Chemistry and Sustainable Development Solutions

[12]] An Introduction to the Rock-forming Minerals (2nd ed.). Harlow: Longman. ISBN 9780470218099

[13]https://geo.libretexts.org/Bookshelves/Geology/Environmental_Geology_%28Earle% 29/10%3A_Weathering_Soil_and_Clay_Minerals/10.05%3A_Clay_Minerals

[14] Diatomite Statistics and Information

[15]] New Sorption Properties of Diatomaceous Earth for Water Desalination and Reducing Salt Stress of Plants ---Calcium wastes as an additive for a low calcium fly ash geopolymer

[16] <u>Diatomaceous Earth: Characterization, thermal modification, and application</u> --- Advances in geopolymer materials: A comprehensive review

[17] https://doi.org/10.1371/journal.pbio.0020306

[18] Natural diatomite process for removal of radioactivity from liquid waste

[19] Diatomaceous Earth: Characterization, thermal modification, and application

[20] <u>RMIS - Raw materials' profiles</u>

[21] RMIS - Raw materials' profiles

[22] Utilization of Industrial By-Products/Waste to Manufacture Geopolymer Cement/Concrete

[23] Eco-friendly agro-waste based geopolymer-concrete: a systematic review

[24] Waste Glass in Cement and Geopolymer Concretes: A Review on Durability and Challenges – Rapid solidification of Highly Loaded High-Level Liquid Wastes with magnesium phosphate cement

[25] Calcium wastes as an additive for a low calcium fly ash geopolymer

[26] Advances in geopolymer materials: A comprehensive review

[27] https://www.researchgate.net/post/What_are_the_limitations_of_geopolymer_concrete

[28] Rapid solidification of Highly Loaded High-Level Liquid Wastes with magnesium phosphate cement

[29] Calcium wastes as an additive for a low calcium fly ash geopolymer [30] Bonding and Phases Analysis of Geopolymer Materials