

Prompt/non-prompt J/ Ψ production in pp collisions at 13.6 TeV at forward rapidity with ALICE experiment

Emilie Barreau

27/02/25

Director : Barbara Erazmus Supervisors : Maurice Coquet, Maxime Guilbaud, Marie Germain

Subatech, Nantes

Table of contents

- **Physics motivation** 1.
- The ALICE Experiment 2.
- **Prompt/non-prompt J/Ψ** 3.

separation using the

pseudo-proper decay time

- **Results** 4.
- Conclusion 5.

1. Context

Nuclear phase diagram

QGP properties

- Deconfined phase of matter
- Hypothetical state of the early Universe
- Predicted by Lattice QCD
- Quarks et gluons are deconfined
- High temperature and/or high baryonic density

Study of this particular state of matter possible thanks to high energy colliders

Production via heavy ion collisions

Heavy Ion Collision at the LHC

QGP Probe : J/Y

- Charm-anticharm (quarkonia) meson
- Muonic channel decay study
- Sensitive to QGP : weakly bounded state

Part	icle Data Group J/ψ(15) DEC	$J/\psi(1S)$ DECAY MODES	
	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Г1	hadrons	(87.7 ± 0.5) ⁶	%
Γ2	virtual $\gamma \rightarrow hadrons$	$(13.50 \pm 0.30)^{\circ}$	%
Гз	ggg	$(64.1 \pm 1.0)^{\circ}$	%
Γ4	γgg	$(8.8 \pm 1.1)^{\circ}$	%
Γ ₅	e^+e^-	$(5.971 \pm 0.032)^{\circ}$	%
Γ ₆	$e^+e^-\gamma$	[a] (8.8 \pm 1.4):	× 10 ⁻³
Г ₇	$\mu^+\mu^-$	$(5.961 \pm 0.033)^{\circ}$	%

Subatech

Significant J/Ψ results : nuclear modification factor R_{AA}

8

2. The ALICE Experiment

Large Hadron Collider

Top Energy (Run 2 : 2015 - 2018)	Top Energy (Run 3 : 2022 - now)
pp : 13 TeV	pp : 13.6 T <mark>eV</mark>
p-Pb: 8.16 TeV	p-Pb : not done yet
Pb-Pb : 5 TeV	Pb-Pb : 5.36 TeV

Luminosity (Run 1 + Run 2)	Luminosity (Run 3)
pp : 41.40 pb ⁻¹	pp : 82.1 pb ⁻¹
Pb-Pb : 0.875 nb ⁻¹	Pb-Pb : 2.11 nb ⁻¹

The ALICE Experiment

3. Prompt/non-prompt J/Ψ separation using the pseudo-proper decay time

- Two main contributions for J/Ψ
 - Prompt
 - produced at primary vertex or coming from charm excited state
 - made it through QGP, probe charm sector
 - Non-prompt
 - decay from hadron b
 - probe beauty sector
- Prompt/non-prompt separation : specific infos about charm and beauty productions
- Improvement of the theoretical models

Prompt and non-prompt J/Ψ separation done using secondary vertexing provided by MFT

Study of the pseudo-proper decay time τ_z

- Pseudo proper decay time
 - $\tau_z = 0$ if prompt • $\tau_z > 0$ if non-prompt
- 2 algorithms for vertexing

 one made by <u>Rita Sadek</u>

$$l_{J/\Psi} = c. au_z = c.rac{(z_{J/\psi} - z_{vtx}).M_{J/\Psi}}{p_z}$$

4. Results

- Crucial step for the analysis
- Optimization of the MFT-MCH matching using the X²
- Work done following the procedure made by Nicolas Bizé

Step 1 : signal/background separation

- Using the invariant mass fit
- Double Crystal Ball + exponential functions
- parameters are fixed after a free iteration (except N_{J/Ψ},

N_{bkg)}

Emilie Barreau

19

Step 1: results

Step 2 : prompt J/Ψ signal fit

- Fitting only left side to get rid of the non-prompt contribution
- Access to the resolution
- Parameters are fixed just as the previous fit
- Done for every p_T ranges

$$F_{prompt}(l_z) = [f_{res} \cdot Gauss(l_z, \sigma_1, l_0) + (1 - f_{res}) \cdot [f_{2res} \cdot Gauss(l_z, \sigma_2, l_0) + (1 - f_{2res} \cdot exp(-\lambda | l_z - l_0|)]]$$

Emilie Barreau

21

Step 3 : non-prompt signal initialization using MC

- Using a full non-prompt Monte
 Carlo dataset
- To initialize the slope of the exponential function
- $\exp(-I_{J/\Psi}/\lambda_{np})$ with $\lambda_{np} \approx 500 \ \mu m$
- λ_{np} parameter constrained but not fixed

Step 4 : J/Y background fit

- DSS : Single Sided exp
- DF : Flipped exp
- DDS : Double Sided exp
- Parameters are fixed
- Complicated fit
 - difficulties to converge
 - more stat would help for the tail part

Emilie Barreau

23

I./ψ (mm)

Step 5 : 2D fit projection

- Non-prompt prompt fraction f'_B
- Study done for each p_T bin
- Promising results but background fit could be improved

Non-prompt fraction

LHCb-PAPER-2015-037, CERN-PH-EP-2015-222, arXiv:1509.00771

- Acceptance
 - geometric correction
 - linked to the detector
- Efficiency
 - technical correction
 - linked to material, trigger, analysis etc.
- Waiting for the associated MC dataset anchored on 2023 data
- In progress

$$f_{B} = \left(1 + \frac{1 - f'_{B}}{f'_{B}} \frac{\langle A \cdot \varepsilon \rangle_{non-prompt}}{\langle A \cdot \varepsilon \rangle_{prompt}}\right)^{-1}$$

 $\langle A \cdot \boldsymbol{\varepsilon}
angle = rac{N_{rec}}{N_{gen}}$

Systematics uncertainties

There is a lot and it is complicated so have a cupcake first

Systematics uncertainties

- Range and function of fits:
 - invariant mass fit functions
 - I_z background model, template, side bands
 - MC template for non-prompt
 - PDF resolution
 - mass pole (mean fit value and PDG value) for I_z calculation
- Signal/background separation method
- Acceptance-efficiency
- Vertexing and matching:
 - variation of matching χ2 selection
 - MFT-Muon matching purity and efficiency from MC
 - MFT-MCH tracking
 - vertexing algorithm (DCAFitter or KFVertexing)
- Impact of ambiguous tracks

5. Conclusion

Conclusion

- J/Ψ is a QGP probe for charm (prompt) and beauty (non-prompt) quarks
- MFT and muon spectrometer allows us to track the dimuon starting from the J/Ψ vertex
- Both J/Ψ contribution can be separated using the pseudo-proper decay time/length
- Some corrections need to be applied (A.ε, systematics...)
 - Talks at QGP France and ALICE meetings
 - Poster at Strangeness in Quark Matter 2024
 - Poster for Quark Matter 2025 (ongoing)

Thank you for your attention !

(just clap and pretend you were not sleeping the whole time)

Backup

QCD prediction

Cold Nuclear Matter effects

- □ Nuclear absorption = dissociation of the c-/c pair with a nucleus
- Inelastic interactions
- Coherent energy lost = quarkonium suppression in p-A interaction
- □ Cronin effect = interaction g-N donne impulsion transverse aux particules
 - enlargement of the pT distribution
 - increase with centrality
- Shadowing = screening of central nuclei by peripheral ones
 - □ A-A collision \neq sum of p-p collisions

Specific parameters

Charm and beauty production models

36

Charm and beauty production models

37

botech

Expected shapes for 2D fit projection

Figure 2.17: Fit of the global pseudo-proper decay-length distributions, for 0-10 % Pb-Pb collisions at $\sqrt{s_{\text{NN}}} = 5.5$ TeV, with the superposition of the three expected contributions for three different p_{T} bins.

Methods for τ_{τ} determination

2 ways to get the secondary vertex

KFVertexing

- using Kalman filter method
- try to find the optimum estimation of an unknown vector (vertex) according to known measurements (tracks parameters)
 - first approximation of the vector, then filtering by using known parameters
 - repeat the process until reach the optimum estimation

DCAFitter

- described in R.Sadek thesis
- secondary vertex determined by finding the crossing point between the 2 muons :
 - Point of Closest Approach (PCA)
- PCA determined using χ^2 minimization

Goal : to compare both methods in τ_{r} determination

- Study performed on integrated and differential p_T
- Method similar to the one performed on 2022 data by Nicolas Bizé
- Cut around 40 for integrated
 p_T
- See <u>PAG meeting</u> for more

