# -NEUTRINO TELESCOPE RESULTS IGEGUBE & ANTARES TERESA MONTARULI

<u>UW-MADISON TMONTARULI@ICECUBE.WISC.EDU</u>

**DEC. 15, 2008** 

**CPPM, MARSEILLE** 

# Contents

☆NEUTRINO ASTRONOMY: why?
☆GAMMA and PROTON ASTRONOMY CONNECTIONS
☆CANDIDATE SOURCES
☆NEUTRINO TELESCOPE Concept
☆DETECTORS: IceCube and ANTARES
☆EVENT TOPOLOGIES
☆NATURAL RADIATORS: deep ice and sea water
☆LOOKING FOR HADRONIC SOURCES



Neutrino Astronomy: why? The Cosmic ray connection Gamma and Proton Astronomy connections Candidate sources Messengers from the Universe Travel distance depends on interactions on radiation backgrounds once particles exit sources



# Photons, CRs and Neutrinos







Doublet from Centaurus A (nearest AGN at ~4 Mpc)

Super-galactic plane

X<sub>max</sub> hints for heavy composition > 2 EeV => larger deflection in B fields HiRes does not confirm (arXiv:0804.0382) No events from Virgo while same number as from Cen A would be expected







Neutrino Telescope Concept Detectors: IceCube and ANTARES Event Topologies

#### **Concept of Neutrino Detector**



## Cherenkov Neutrino Telescope Projects



## Full Sky Coverage with upgoing neutrinos

#### To cover better galactic sources we need Med detectors



ANTARES 43° N Galactic Centre 2/3 of day

#### IceCube/AMANDA at South Pole



TeV sources from tevcat.uchicago.edu > 70 TeV sources







In-ice strings: now 2400 DOMs on 40 strings taking physics data

#### + 3 new strings since Dec 6!!!



Time for a full hole and start a new one about 2 days: we can deploy 18 strings /season! About 0.5 TJ in each hole!



Icetop tanks

Two DOMs per tank Two tanks at the top of each string Now 80 tanks and 160 DOMs taking physics data

- DOMs with problems ~3%
- Est. survival rate after 15 years: 95%

# Digital Optical Module (DOM)



#### **PLANS FOR FUTURE SEASONS**



#### **The ANTARES Collaboration**



The first undersea neutrino telescope is complete since May 08



#### **The ANTARES Site and Control Room**

Shore Station

## La Seyne

Toulon

~2475m deep

Submarine cable (45km)

![](_page_23_Picture_0.jpeg)

#### A flasher cascade-like event and muon in IC40

10 10:50:02 2008

Flasher (12LEDs, 10ns pulse) in most transparent ice, light propagates even more than 600m! We calibrate energy measurement with flashers Event 86660 [9000ns, 9000ns]

![](_page_25_Picture_0.jpeg)

#### **Coincident muons**

![](_page_26_Figure_1.jpeg)

# Natural radiators: deep ice and sea water

We need transparent and dark media and deep detectors Use Earth as a filter to detect neutrinos

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

Million to 1 background to signal from above. → Use Earth as filter; look for neurtinos from below.

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

| Detector config | Phys run   | Trigger rate | (8DOMs in 5 usec) |
|-----------------|------------|--------------|-------------------|
| IC9             | I 37d      | 80 Hz        |                   |
| IC22            | 290d       | 670 Hz       |                   |
| IC40            | May 08-Apr | 09 I.I kHz   |                   |

![](_page_34_Figure_2.jpeg)

First measurement above 50 GeV of nue atmospheric neutrinos possible: 1500 events/200 d IceCube has access to prompt muon and neutrino region!

![](_page_35_Picture_0.jpeg)

![](_page_35_Picture_1.jpeg)

![](_page_36_Figure_0.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_38_Figure_0.jpeg)

## **Binned/Unbinned Methods**

![](_page_39_Figure_1.jpeg)

Maximum LH ratio (Braun et al, 2008) or Expectation Maximization pattern recognition method (Aguilars & Hernandez, 2008)

$$\mathcal{L}(n_s) = \prod_{i=1}^{N} \left( \frac{n_s}{N} \mathcal{S}_i + \left( 1 - \frac{n_s}{N} \right) \mathcal{B}_i \right)$$

 $L(x_s, \hat{\gamma}, \hat{n}_s)$ 

 $L(n_s = 0)$ 

$$S_i = \frac{1}{2\pi\sigma_i^2} e^{-r_i^2/2\sigma_i^2} \cdot \underline{P(E_i|\gamma)}$$

$$\mathcal{B}_i = B_{ ext{zen}} \cdot P_{ ext{atm}}(E_i)$$

 $\log \lambda = \log ($ 

Signal pdf contains space and energy term that characterize the difference between signal and background

Backgr pdf is from data hence pvalues do not depend on simulation

![](_page_39_Figure_8.jpeg)

used to determine significance of observed deviation from null hypothesis

LH function = product of partial prob for each event

Teresa Montaruli, UW-Madison

40

#### Effective areas for muon neutrinos

![](_page_40_Figure_1.jpeg)

# More powerful method

![](_page_41_Figure_1.jpeg)

Teresa Montaruli, UW-Madison

0.9

1

![](_page_42_Figure_0.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

## IceCube point-source analysis

![](_page_45_Figure_1.jpeg)

### IC9 Sky Map

![](_page_46_Figure_1.jpeg)

Max significance **3.35 sigma, 60% simulated background trials** (data scrambled in right ascension), have this significance or greater.

26 candidate source list: largest deviation from background: Crab 1.77 sigma, **65% of independent trials** have this significance or greater.

47

![](_page_47_Figure_0.jpeg)

IC9 1.7 neutrino events/day, 134.7 d, median ang res 2° IC22: 20 events/day => 5114 at final cut level in **275.7d** median ang res 1.5° IC80: expect about 200 events/day, median and res 0.8°

#### IC22 unblinded Sky Map

![](_page_48_Figure_1.jpeg)

At hottest spot: est. nSrc events = 7.7 Est. gamma = -1.65 Est. pre-trial p-value:  $-\log_{10}(p) = 6.14$ Post-trial p-value: 1.34% (out of 10,000 trials of scrambled data sets 0.67% have p-value of most significant spot more significant than what found in data and we include a trial factor of 2 for having performed an all-sky analysis and a source list one)

Not seen in analysis not using energy estimator

#### No evident candidate counterpart

Time dependent analysis of events contributing to hottest spot. Best fit to gaussian of any duration +backg: wo energy best fit of 3.9d and with energy 71.2 d. Combined p-value = 0.6 (not significant)

# Working on:

IC40 data filtering IC40 has improved ang. res. and about 2 x IC22 effective area

Use better track reconstruction for high NCh events (use all PE in DOMs not only first hit) Use energy estimator rather than NCh

![](_page_49_Figure_3.jpeg)

![](_page_49_Figure_4.jpeg)

## Summary

#### IC22 Point-source analysis shows a hot spot at the level of 1%

- IC40 data are being filtered for physics streams and would allow to understand if it is a statistical fluctuation
- First IC56 string on Dec 6. Already
   4 installed.
   <a href="http://driller.icecube.wisc.edu/plots/">http://driller.icecube.wisc.edu/plots/</a>
- ANTARES if taking data in its full configuration
- Water is an ideal medium for photon propagation properties but is not a quiet environment as ice

|      |      |   |     |       |         | -  | · · .            |     |     |  |
|------|------|---|-----|-------|---------|----|------------------|-----|-----|--|
|      | 1    | : | : : |       | 1.1     |    |                  | ::  |     |  |
| NN   |      | : | : : |       |         |    |                  | • : | : : |  |
|      |      | ; | : : |       |         | ~  | · : :            |     | : 1 |  |
|      |      | : | : : | : 2   |         | -  |                  | ::  | : 1 |  |
|      | 1:   | : | : : |       |         | -  |                  | ::  | : : |  |
| -160 | 00   |   |     |       | 12.11   | :  |                  |     |     |  |
| 100  | :    | : | : : |       |         |    | - : : :          | ::  | : - |  |
|      |      | : | : : | : :   |         | -  | 1111             | ::  | · : |  |
|      | :    | : | : : |       |         |    |                  | ::  | : : |  |
|      |      |   |     |       | 1.1     | 2. |                  |     | : - |  |
|      |      | : | : : |       |         |    | - 3 3 3          | ::  | : 1 |  |
|      | :    | : | : : | : :   |         | -  |                  | ::  | : : |  |
| -180 | 0 :  | : | : : |       |         | 2  | 2.4.3            | ::  | 1   |  |
|      |      | : | : : |       |         |    |                  | . : | : + |  |
|      |      | : | : : |       |         |    | - 5 3 3          | ::  | : : |  |
|      | :    |   | : : | : :   |         | -  |                  | ::  | : : |  |
|      | :    | : | : : |       |         | 2  |                  | ::  | · : |  |
|      | 1    | : | : : |       |         | 2  |                  | ::  |     |  |
|      |      |   |     |       | :: ::   | 2  | (i :             |     | : : |  |
| -200 | : 0  | : | : : | : :   |         | -  |                  | ::  | : 1 |  |
|      |      | : | : : | : 2   |         | -  |                  | ::  |     |  |
|      | :    | : | : : |       |         | 3  |                  | ::  | : : |  |
|      |      |   |     |       | 12 - 11 | :  |                  |     | : 1 |  |
|      | :    | : | : : |       |         |    | <pre>4 1 1</pre> | ::  | : 1 |  |
|      | 1:   | : | : : | : 2   |         | -  | 111              | ::  | : : |  |
| -220 | : 00 | : | : : | : 2   | 1.2     | 2  |                  | ::  |     |  |
|      | :    | : | : : |       | 12.1    |    |                  | ::  | : : |  |
|      |      |   |     |       |         | 2  |                  |     | :   |  |
|      | :    | : | : : |       |         |    |                  | ::  | : : |  |
|      | 1:   | : | : : | : 3   |         | -  | 1.1              | ::  | : : |  |
|      | :    | : | : : | · :   |         | 2  |                  | ::  |     |  |
|      |      | : | : : |       | 12.11   | 2  | 111              | ::  | : : |  |
| -240 | 0    |   |     |       | 12.11   | 2  |                  |     | : + |  |
|      |      | : | : ' | •     | -       |    | 2 · · ·          | • : | · 1 |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      | 500  |   |     |       |         |    |                  | 000 | 400 |  |
|      | 500  |   | 250 |       | 0       |    |                  | 200 |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     | run 0 | event   | 0  |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       | 1.      | 1. |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       |         | ·  | 1.0              |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       | 17      | 12 |                  |     |     |  |
|      |      |   |     |       |         |    | · .              |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       |         | 1  |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |
|      |      |   |     |       |         |    |                  |     |     |  |

some of the hot spot events

## Hottest spot events

of hits (m)

|      |           |     | Est. Ang.<br>res (deg) | Ang. dist.<br>from best fit<br>src (deg) | Dist. det. centre center of gravit |
|------|-----------|-----|------------------------|------------------------------------------|------------------------------------|
| rank | s/B       | Nch | sigma                  | dAng                                     | CogZ                               |
| 1:   | 67449.380 | 145 | 0.84                   | 0.717                                    | -349.2                             |
| 2:   | 33656.799 | 148 | 1.75                   | 1.086                                    | -167.8                             |
| 3:   | 15483.897 | 77  | 0.88                   | 1.203                                    | -456.1                             |
| 4:   | 13593.747 | 168 | 2.68                   | 1.924                                    | -289.5                             |
| 5:   | 4169.923  | 65  | 1.52                   | 2.337                                    | -285.8                             |
| 6:   | 3199.724  | 51  | 1.62                   | 0.444                                    | 25.6                               |
| 7:   | 639.997   | 29  | 1.51                   | 1.385                                    | -198.6                             |
| 8:   | 490.646   | 28  | 1.68                   | 1.634                                    | 158.0                              |
| 9:   | 308.372   | 44  | 2.79                   | 4.595                                    | -324.8                             |
| 10:  | 271.344   | 34  | 1.23                   | 2.538                                    | 139.6                              |
|      |           |     |                        |                                          |                                    |

Hottest spot events are deep in the detector where the ice is more transparent and high NCh. Signal NCh pdf affected by knowledge of ice properties but p-value extracted from data is solid.

![](_page_52_Figure_3.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Picture_0.jpeg)

#### **New Physics Effects**

 Violation of Lorentz invariance (VLI) in string theory or loop quantum gravity\*

![](_page_54_Picture_3.jpeg)

- Violations of the equivalence principle (different gravitational coupling)<sup>†</sup>
- Interaction of particles with spacetime foam ⇒ quantum decoherence of flavor states<sup>‡</sup>

\* see e.g. Carroll *et al.*, PRL **87** 14 (2001), Colladay and Kostelecký, PRD **58** 116002 (1998) <sup>†</sup> see e.g. Gasperini, PRD **39** 3606 (1989)

<sup>‡</sup> see e.g. Anchordoqui et al., hep-ph/0506168

![](_page_54_Picture_8.jpeg)

![](_page_54_Picture_9.jpeg)

#### Quantum Decoherence (QD)

Another possible low-energy signature of quantum gravity: quantum decoherence

Heuristic picture: foamy structure of space-time (interactions with virtual black holes) may not preserve certain quantum numbers (like v flavor)

Pure states interact with environment and <u>decohere</u> to mixed states

![](_page_54_Picture_14.jpeg)

![](_page_55_Picture_0.jpeg)

#### Systematics Summary

| error                                    | type     | size                       | method         |
|------------------------------------------|----------|----------------------------|----------------|
| atm. v flux model                        | norm.    | ±18%                       | MC study       |
| $\sigma_{v}$ , v- $\mu$ scattering angle | norm.    | ±8%                        | MC study       |
| reconstruction bias                      | norm.    | -4%                        | MC study       |
| $v_{\tau}$ -induced muons                | norm.    | +2%                        | MC study       |
| charm contribution                       | norm.    | +1%                        | MC study       |
| timing residuals                         | norm.    | ±2%                        | 5-year paper   |
| μ energy loss                            | norm.    | ±1%                        | 5-year paper   |
| rock density                             | norm.    | <1%                        | MC study       |
| primary CR slope (incl. He)              | slope    | $\Delta \gamma = \pm 0.03$ | Gaisser et al. |
| charm (slope)                            | slope    | $\Delta \gamma = +0.05$    | MC study       |
| π/K ratio                                | tilt     | tilt +1/-3%                | MC study       |
| charm (tilt)                             | tilt     | tilt -3%                   | MC study       |
| OM sensitivity, ice                      | OM sens. | sens. ±10%                 | MC, downgoing  |

![](_page_56_Figure_0.jpeg)

![](_page_57_Picture_0.jpeg)

- Consortium of 40 Institutions from 10 European countries in European Strategy Forum on Reasearch Infrustructures roadmap
- Propose a facility for Deep Sea Science
- Concept Design Report done
- Site decision still open

![](_page_57_Picture_5.jpeg)

![](_page_57_Figure_6.jpeg)

# **NESTOR and Baikal**

![](_page_58_Picture_1.jpeg)

NT200 data sample: 372 neutrino events in 1038d

![](_page_58_Figure_3.jpeg)

![](_page_59_Figure_0.jpeg)

Alvarez-Muniz and Halzen ApJ 576 (2002)

# The photon $\Leftrightarrow$ neutrino connection

pp interactions

$$p + A \rightarrow \pi^0 + \pi^+ + \pi^-$$

pions share p energy

2 photons with:  $E_{\gamma} \approx \frac{E_{\pi}}{2} \approx \frac{E_{p}}{6} \frac{1}{\sqrt{\gamma}} \frac{1}{\mu v_{\mu}}$  For each gamma 2 muon neutrinos with:

$$E_{\rm v} \approx \frac{E_{\pi}}{4} \approx \frac{E_p}{12}$$

Hence energy in photons and gammas is the same.

After oscillations:  $v_{\mu}/\gamma \sim 0.5$ 

$$\begin{split} &\int_{E_{\gamma}^{\min}}^{E_{\gamma}^{\min}} E_{\gamma} \frac{dN_{\gamma}}{dE_{\gamma}} dE_{\gamma} = K \int_{E_{\nu}^{\min}}^{E_{\nu}^{\min}} E_{\nu} \frac{dN_{\nu}}{dE_{\nu}} dE_{\nu}, \qquad \mathsf{K}\sim 0.5 \\ &E_{p}^{\max} = 6E_{\gamma}^{\max}, \quad E_{\nu}^{\max} = \frac{1}{12} E_{p}^{\max}, \\ &E_{p}^{\min} = \Gamma \frac{(2m_{p} + m_{\pi})^{2} - 2m_{p}^{2}}{2m_{p}} \simeq \Gamma \times 1.23 \,\mathrm{GeV}, \qquad p + p \rightarrow p + p + \pi^{0} \\ &p + p \rightarrow p + n + \pi^{+} \end{split}$$

Minimum proton energy fixed by threshold for  $\pi$  production ( $\Gamma$  =E/m is the Lorentz factor of the p jet respect to the observer) 61

 $e + 2v_{\mu} + v_{e}$ 

## The photon $\Leftrightarrow$ neutrino connection

![](_page_61_Figure_1.jpeg)

# ANTARES 10 line event

![](_page_62_Figure_1.jpeg)

63

# **Attenuation length in water**

![](_page_63_Figure_1.jpeg)