Hunting for heavy b baryons from Ξ_b to Ω_b

Jianming Qian University of Michigan (on sabbatical at Saclay)

on behalf of the DØ Collaboration

November 3, 2008 CPPM, Marseille

History of the Bottom...

 $p+(Cu, Pt) \rightarrow \mu^+\mu^- + X$

It has been over 30 years since the discovery of the upsilon meson at Fermilab by Lederman et al.

Since then, we have come a long way in studying B mesons

But not so much in understanding B baryons. Until two years ago, only one baryon was observed...

b Baryons

A total of 15 b baryons are predicted (counting quark content only)

charmless b baryon (10 in total) multiplet

J = 3/2 b Baryons

Observed b Baryons

Until recently, only one b baryon has been directly observed. $\Lambda_b \text{ (udb)}: \Lambda_b \rightarrow J/\psi \Lambda$ *UA1: PL B273, 540 (1991)*

However, four were discovered over the last two years:

 Σ_{b}^{+} (uub) / Σ_{b}^{-} (ddb): $\Sigma_{b}^{\pm} \rightarrow \Lambda_{b} \pi^{\pm} \rightarrow (\Lambda_{c}^{+} \pi^{-}) \pi^{\pm}$ CDF: PRL 99, 202001 (2007)

 Ξ_{b}^{-} (dsb): $\Xi_{b}^{-} \rightarrow J/\psi \Xi^{-}$ (DØ, CDF); $\Xi_{b}^{-} \rightarrow \Xi_{c}^{0}\pi^{-}$ (CDF) DØ: PRL 99, 052001 (2007); CDF: PRL 99, 052002 (2007)

$$\Omega_{b}^{-}(ssb): \ \Omega_{b}^{-} \to J/\psi \ \Omega^{-} \to J/\psi \ (\Lambda K^{-})$$

DØ: arXiv: 0808.4142 (2008), to be published in PRL

Tevatron Collider

$p\overline{p}$ collider with $\sqrt{s} = 1.96$ TeV

Running well...

- surpassed design instantaneous luminosity⁶
- delivered ~ 5 fb⁻¹ to each experiment

Collider Run II Integrated Luminosity

The DØ Detector

No particle ID, no large tracker, no displaced track trigger... But many smart people \Rightarrow amazingly productive!

Silicon Detector

Tracking and Muon

8 layers of ϕ =830 μ m scintillating fibers with a total channel count of 76,800 and a radius span from 20 to 50 cm

$$B\ell^2 \sim 0.5 \,\mathrm{Tm}^2 \implies \frac{\delta p_T}{p_T} \approx 1\% \times p_T$$

Muon Detector

- proportional drift tubes
- central and end toroidal magnets
- scintillator for triggers
- ~ 20% standalone momentum resolution

Momentum Calibration

Calibrate the average momentum scale of tracks using well measured $\mu\mu$ resonances ...

b Production

Huge production rate compared to lepton colliders:

$$\sigma(p\overline{p} \to b\overline{b}) \approx 150 \ \mu b @ \sqrt{s} = 2 \ \text{TeV}$$

$$\sigma(e^+e^- \to b\overline{b}) \approx 7 \ \text{nb} @ \sqrt{s} = M_Z$$

$$\sigma(e^+e^- \to B\overline{B}) \approx 1 \ \text{nb} @ \sqrt{s} = M_{\Upsilon(4S)}$$

Production of heavy states often inaccessible elsewhere

Mesons:
$$B_s$$
, B_c , B^{**} , B_s^{**} ,...
Baryons: Λ_b , Σ_b , Ξ_b , Ω_b ,...

But also huge backgrounds and messy events ...

Environmental Challenges

ET scale: 19 GeV DØ

Run 179617 Event 13821318 Thu Aug 28 10:24:29 2003

~ 5 tracks / event

> 100 tracks / event

Tough environment to do B physics !

CPPM, November 3, 2008

B Physics Triggers

The entire B physics program at DØ is based on muon triggers

- single and dimuon triggers
- large muon coverage \Rightarrow good acceptance for b events
- a few hertz final rate, limited by bandwidth capability

This analysis includes any event with a reconstructed J/ $\psi \rightarrow \mu\mu$, no specific trigger is required.

CPPM, November 3, 2008

B Physics at **DØ**

DØ has a diverse program in B physics, recent results include

- search for CP violation in semileptonic Bs decays;
- measurement of Br(Bs→Ds*Ds*) and the lifetime difference in Bs system;
- measurement of the flavor oscillation frequency of Bs mesons;
- limit on the rare decay Bs $\rightarrow \mu\mu$;
- measurement of the angular and lifetime parameter of the the Bd \rightarrow J/ ψ Ks and Bs \rightarrow J/ $\psi \phi$ decays;
- measurement of the lifetime and the mass of the Bc meson;
- measurement of the polarization of the Upsilon(1S) and Upsilon(2S);

For the full list of the results, please refer to http://www-d0.fnal.gov/Run2Physics/WWW/results/b.htm

.....

Reconstruction

Our b baryon searches begin with the $\Lambda_{\rm b}$ lifetime measurement:

 $\Lambda_{b} \rightarrow J/\psi \Lambda$

(charge conjugate states are assumed)

What we have learned: the standard reconstruction algorithm is inefficient for long-lived particles due to its requirement that tracks originate close to the primary vertex

 Λ is long-lived and has a soft pT spectrum. To improve efficiency, we have to relax the IP requirement in the reconstruction

Special Reprocessing

Reprocessing with loose requirements is impractical, will bust our CPU budget

- \Rightarrow Selective reprocessing
 - select J/ $\psi \rightarrow \mu\mu$ events from the standard reconstruction
 - reprocess these events with relaxed requirements such as the IP

Long-Lived Particles

The reprocessing significantly improved the yields of V particles

What can we do with this dataset ? \Rightarrow Look for $\Xi_{\rm b}$ and $\Omega_{\rm b}$

Search for Ξ_b

 $\Xi_{\rm b}$ has a very similar decay chain as the $\Lambda_{\rm b} \rightarrow J/\psi \Lambda$ decay:

$$\Lambda_{\mathsf{b}} \rightarrow \left(\mu^{+}\mu^{-}\right) \left(p\pi^{-}\right) \qquad \Xi_{\mathsf{b}}^{-} \rightarrow \left(\mu^{+}\mu^{-}\right) \left(p\pi^{-}\right) \pi^{-}$$

- trigger on J/ $\psi \rightarrow \mu\mu$,
- fully reconstructable, no neutral particles
- multiple intermediate resonances for background rejection

Ξ_{b} Reconstruction

Event Reconstruction:

- Reconstruct $J/\psi \rightarrow \mu^+\mu^-$ and $\Lambda \rightarrow p\pi^-$
- Combine Λ with another π^- to form Ξ^- candidate
- Combine J/ ψ with Ξ^- to form $\Xi^-_{\rm b}$ candidate

Checks & Balances:

- validate with the known decays $\Lambda_{\rm b} \to {\rm J}/\psi~\Lambda$
- wrong-sign $\Lambda(p\pi^-)\pi^+$ as background
- MC $\Xi_{\rm b}^- \rightarrow {\rm J}/\psi \ \Xi^-$ as the signal

Resonance mass constraints

$$M(J/\psi \rightarrow \mu^{+}\mu^{-}) = 3.097 \text{ GeV}$$
$$M(\Xi^{-} \rightarrow \Lambda \pi^{-}) = 1.321 \text{ GeV}$$
$$M(\Lambda \rightarrow p\pi^{-}) = 1.115 \text{ GeV}$$

Lifetime information $c\tau(\Xi_{b}^{-}) \approx 0.5 \text{ mm}$ $c\tau(\Xi^{-}) = 4.9 \text{ cm}$ $c\tau(\Lambda) = 7.9 \text{ cm}$

Kinematic Variables

Decay length (DL)

the distance between the production and decay vertices in the transverse plane

Proper decay length (pDL)

decay length corrected for Lorentz boost

$$\gamma_{\tau} = \frac{p_{\tau}}{M} \implies \text{pDL} = \frac{\text{DL}}{\gamma_{\tau}}$$

Collinearity $\cos \vartheta$

cosine of the angle in the transverse plane between the momentum vector of the mother and the vector pointing from the production to the decay vertex

production vertex

decay vertex,

decaylength

Ξ_{b} Event Selection

$\Lambda \rightarrow \mathbf{p}\pi$ decays

- two tracks with large impact parameters;
- proton = the track with a higher momentum;
- p_T(p) > 0.7 GeV, p_T(π) > 0.3 GeV;
- Λ has a significant decay length (>4 σ)

$\Xi \rightarrow \Lambda \pi$ decays

- π track has a large impact parameter;
- pT(π) > 0.2 GeV;
- uncertainty of Ξ decay length < 0.5 cm;
- Ξ has a significant decay length (> 4 σ);
- collinearity > 0.99

$\Xi_b \rightarrow J/\psi \Xi$ decays

- uncertainty on the proper decay distance < 0.05 cm;
- lifetime significance > 2

Ξ_{b} Observation

Mass distribution of $J/\psi \Xi^-$

$$M(\Xi_{b}^{-}) = 5.774 \pm 0.019 \text{ GeV}$$

 $N(\Xi_{b}^{-}) = 15.2 \pm 4.4$

Likelihood fits w/o signal:

$$\sqrt{-2\ln\left(\frac{\mathbf{f}_b}{\mathbf{f}_{s+b}}\right)} = 5.5\sigma$$

PRL 99, 052001 (2007)

CPPM, November 3, 2008

Search for the Ω_b

The Ω_b baryon has an almost identical decay mode as the Ξ_b

$$\Xi_{\mathsf{b}}^{-} \rightarrow \left(\mu^{+}\mu^{-}\right) \left(\rho\pi^{-}\right) \pi^{-} \quad \Omega_{\mathsf{b}}^{-} \rightarrow \left(\mu^{+}\mu^{-}\right) \left(\rho\pi^{-}\right) \overset{}{\overset{}{\overset{}\underset{}{\overset{}\underset{}{\overset{}}{\overset{}}}}$$

what worked for the Ξ_b should work for the Ω_b except it turns out the Ω identification is more difficult...

CPPM, November 3, 2008

Decay Kinematics

$$\Omega_{b}^{-} \rightarrow J/\psi \ \Omega^{-} \rightarrow (\mu^{+}\mu^{-})(\Lambda K^{-}) \rightarrow (\mu^{+}\mu^{-})(p\pi^{-})K^{-}$$

$$c\tau(\Omega_{b}^{-}) \approx 0.5 \text{ mm}, \ Q(\Omega_{b}^{-} \rightarrow J/\psi \ \Omega^{-}) > 1 \text{ GeV}$$

$$M(\Omega^{-}) = 1672.45 \text{ MeV}$$

$$c\tau(\Omega^{-}) = 2.46 \text{ cm}$$

$$Q(\Omega^{-} \rightarrow \Lambda K^{-}) = 63 \text{ MeV}$$

$$M(\Lambda) = 1115.68 \text{ MeV}$$

$$c\tau(\Lambda) = 7.89 \text{ cm}$$

$$Q(\Lambda \rightarrow p\pi^{-}) = 38 \text{ MeV}$$

$$M(\Lambda) = 10 \text{ cm}$$

$$CFT$$

$$CFT$$

$$CFT$$

$$CFT$$

x

Search Strategy

- use Ω_b Monte Carlo events as the signal model produced with Pythia with M=6.052 GeV and τ =1.54 ps
- use data wrong-sign events as the background model Signal sample: $(\mu^+\mu^-)(p\pi^-)\kappa^-$ Control sample: $(\mu^+\mu^-)(p\pi^-)\kappa^+$
- optimize the selection of intermediate resonances $\Lambda \rightarrow p\pi^-$ and $\Omega^- \rightarrow \Lambda K^-$
- maximize selection efficiencies without exploring the details of Ω_b decay kinematics
- search in the mass window 5.6 7 GeV $M(\Lambda_b) = 5.62 \text{ GeV}, \ M(\Omega_b^-) \sim 6 \text{ GeV}$

$\Lambda \rightarrow p\pi$ Reconstruction

- two tracks with large impact parameters and consistent with being from a common vertex;
- transverse momentum greater than 0.2 GeV for both tracks;
- the track with the higher momentum assumed to be the proton;
 - \Rightarrow almost always correct assignment according to Monte Carlo
- require the invariant mass of the tracks

 $1.108 < M(p\pi^{-}) < 1.126 \text{ GeV}$

$\Omega \rightarrow \Lambda K$ Reconstruction

- $\Lambda(p\pi^{-})$ and K⁻ form a good vertex
- uncertainty of the $\Omega^- \rightarrow \Lambda K^-$ proper decay length smaller than 0.5 cm;
- decay length significance greater than 4.

The Ω signal in the Λ K⁻ right-sign combination, but over a large combinatoric background

Ω Background

Boosted Decision Tree to reduce combinatoric background

20 input variables

- Λ and Ω decay vertex quality variables and decay lengths;
- Λ and Ω decay kinematic information;
- nothing on J/ $\psi \Omega$ combination nor its vertex

Training and optimization

- Ω in the Ω_b MC events as the signal model;
- Data J/ $\psi \Lambda K^+$ wrong-sign events as the background model

Most important variables

- pT of the kaon;
- pT of the proton;
- pT of the pion;
- Ω decay length

$\boldsymbol{\Omega}$ after the BDT

number of Ω candidates remain about the same, but the background is significantly reduced

We require
$$1.662 < M(\Lambda K^{-}) < 1.682 \text{ GeV}$$

Contamination from Ξ

A significant fraction of the continuum background is from the $\Xi \rightarrow \Lambda \pi$ decays with a kaon mass assigned to the pion

Vetoing events with M($\Lambda\pi$) < 1.34 GeV

Ω_b Selection

- J/ ψ and Ω candidates are consistent with being from a common vertex;
- the uncertainty of the Ω_b proper decay length smaller than 0.03 cm;
- the Ω_b transverse momentum greater than 6 GeV;
- the J/ ψ and Ω transverse opening angle less than 90 degree

Mass Resolution

Poor-man's mass constraint to improve the Ω_b resolution

$$M(\Omega_b^-) \equiv M(J/\psi \Omega^-) + \text{Corr.}$$

Event-by-Event correction:

Corr. =
$$\left\{ M_{PDG} \left(J / \psi \right) - M \left(\mu^{+} \mu^{-} \right) \right\} + \left\{ M_{PDG} \left(\Omega^{-} \right) - M \left(\Lambda K^{-} \right) \right\}$$

The Ω_{b} resolution is reduced from 80 MeV to 34 MeV in MC

D

Ω

I/w

L

 π

K

Wrong-sign Events

Mass distribution of J/ $\psi \Lambda K^+$ events

- require M(Λ K⁺) in the Ω ⁻ mass window;
- Ω_b selection on J/ $\psi \Lambda K^+$ combination;
- 30 events survived...

No apparent structure in the M(J/ $\psi \Lambda K^+$) distribution

Side-band Events

CPPM, November 3, 2008

Open the Box

79 right-sign (J/ $\psi \Lambda K^{-}$) events are selected

Unbinned Likelihood Fit

- a flat background model;
- a Gaussian signal model with its width fixed to 0.034 GeV
- float numbers of signal and background events, signal mass

Results of the fit:

- number of signal events: 17.8 ± 4.9
- mean of the Gaussian signal: 6.165 ± 0.010 GeV

Signal Significance

To estimate the significance, two separate fits are performed

- one with a background-only (flat) model;
- the other with a signal plus background model

and calculate the difference in the likelihood values between the fits

$$\sqrt{-2\Delta \ln f} = \sqrt{-2\ln \left(\frac{f_b}{f_{s+b}}\right)} = 5.4\sigma$$

To study the robustness of this estimate, we vary

- background model to a 1st order polynomial;
- the signal width between 0.028 and 0.040 GeV;
- \bullet the selection requirements such as $\Omega_{b}\, \text{pT}$

In all these cases, the significance remains above 5σ

Consistency Check

The Ω_b pT cut impacts the signal significantly... • optimized for high efficiency, not significance...

"Look back" Plots

We look back the Λ and Ω mass distributions of the Ω_b candidates and estimate the numbers of Λ and Ω candidates in these distributions

... and find consistent numbers of Λ, Ω and Ω_{b} candidates

Cuts instead of BDT

- Ξ_{b} was observed with simple cuts;
- can we see the Ω_b signal with a set of simple cuts as well?

(even though the BDT was trained to reduce the Ω background)

Variable	BDT	Cuts
p _T (π) (GeV)	>0.2 and input to BDT	>0.2
p _T (p) (GeV)	>0.2 and input to BDT	>0.7
р _т (К) (GeV)	input to BDT	>0.3
Ω^- collinearity	input to BDT	>0.99
Ω^- decay length (cm)	input to BDT	>0.5
Ω_{b}^{-} proper decay length uncertainty (cm)	<0.03	<0.03

These variables were selected based on the relative importance in the BDT performance

Cut Based Analysis

Results of the fit:

- number of signal events: 15.7 ± 5.3
- mean of the Gaussian signal: 6.177 ± 0.015 GeV

The significance is reduced to 3.9 σ due to the increased background

BDT and Cuts

BDT and cut-based analyses often select different events, the overlap of the final candidates is only about 50%

If the two analyses are combined, we get 25.5 \pm 6.5 signal events with a significance of 5.4 σ

Signal Lifetime

Statistics is too small for a lifetime measurement, however the observed proper decay length distribution for candidates in $\pm 3\sigma$ mass window is consistent with a lifetime of the order ~ 1 ps

Ω_{b} Mass

- Fitting models
 - Linear background instead of flat \Rightarrow negligible change
 - Varying Gaussian width between 28 40 MeV \Rightarrow 3 MeV

$$M(\Omega_b^-) = 6.165 \pm 0.010(stat) \pm 0.013(syst) \text{ GeV}$$

on the high side of the predicted mass...

Production Ratio

To get a ball-park production rate, we normalize to that of Ξ_{b}

$$\frac{f(b \to \Omega_b^-) \times Br(\Omega_b^- \to J/\psi \ \Omega^-)}{f(b \to \Xi_b^-) \times Br(\Xi_b^- \to J/\psi \ \Xi^-)} = \frac{\varepsilon(\Xi_b^-)}{\varepsilon(\Omega_b^-)} \frac{N(\Omega_b^-)}{N(\Xi_b^-)}$$

Using the efficiency ratio from MC $\mathcal{E}(\Omega_{h}^{-})$

$$\frac{\varepsilon(\Xi_b)}{\varepsilon(\Xi_b)} = 1.5 \pm 0.2 \text{ (stat)}$$

and the observed number of events, we obtain

$$\frac{f(b \to \Omega_b^-) \times Br(\Omega_b^- \to J/\psi \ \Omega^-)}{f(b \to \Xi_b^-) \times Br(\Xi_b^- \to J/\psi \ \Xi^-)} = 0.80 \pm 0.32(\text{stat})^{+0.14}_{-0.22}(\text{syst})$$

Production Ratio

H.Y. Cheng, PRD 56, 2799 (1997)

$$\frac{\Gamma(\Omega_b^- \to J/\psi \ \Omega^-)}{\Gamma(\Xi_b^- \to J/\psi \ \Xi^-)} = 9.8 \qquad \left\{ \text{ Spin}(\Xi^-) = 1/2, \text{ Spin}(\Omega^-) = 3/2 \right\}$$

$$\tau(\Xi_b) = 1.42^{+0.28}_{-0.24} \text{ ps} \left(\text{LEP, mixture of } \Xi^0 \text{ and } \Xi^- \right)$$

$$0.83 < \tau(\Omega_b^-) < 1.67 \text{ ps} \left(\text{prediction, very conservative} \right)$$

$$\frac{f(b \to \Omega_b^-)}{f(b \to \Xi_b^-)} \approx 0.07-0.14$$

(range of the central value)

An Ω_b Candidate

Run 203929, Event 22881065, $M(\Omega_b) = 6.158 \text{ GeV}$

Summary

We have observed Ω_b baryon with a significance > 5σ

$$M(\Omega_b^-) = 6.165 \pm 0.010(\text{stat}) \pm 0.013(\text{syst}) \text{ GeV}$$

 $N(\Omega_b^-) = 17.8 \pm 4.9(\text{stat}) \pm 0.8(\text{syst})$

arXiv: 0808.4142 (2008)

BDT Variables

Variable description Λ vertex χ^2 Λ collinearity A lifetime significance p track (from Λ) χ^2 p (from Λ) combined impact parameter significance p track SMT hits p track CFT hits π track (from Λ) χ^2 π (from Λ) combined impact parameter significance π track SMT hits π track CFT hits p (from Λ) p_T π (from Λ) p_T Λ transverse decay length Error on Λ transverse decay length Error on Ω^- transverse decay length Ω^{-} transverse decay length Ω^- collinearity K^- (from Ω^-) p_T (from Ω^{-}) combined impact parameter significance K^{-}

