

DATA ANALYSIS FOR GAMMA-RAY ASTRONOMY

GAMMAPY WORKSHOP

December 2024

LAURA OLIVERA-NIETO

A Python package for gamma-ray astronomy

Gammapy Workshop - Data Analysis

- VERY HARD TO COVER ALL TOPICS/EXISTING SOFTWARE IN ~2H
- 3 DIFFERENT TYPES OF INSTRUMENT, SUBTLETIES AND TECHNICALITIES SPECIFIC TO EACH (AS YOU HAVE SEEN ALREADY!)
- IN THIS TALK I WILL INSTEAD TRY TO FOCUS ON THE THINGS IN COMMON
- FOR THAT I WILL RELY HEAVILY ON GAMMAPY A Python package for gamma-ray astronomy
- NOT THE ONLY EXISTING PACKAGE OF COURSE BUT THE ONLY ONE DEDICATED TO GAMMA-RAY AS A WHOLE

DATA ANALYSIS

6

DATA ANALYSIS

WHAT DOES THE DATA OF GAMMA-RAY INSTRUMENTS LOOK LIKE?

DATA What do I need to go from data to physical quantities?

How to determine the validity of data?

▶ WHAT IS "DATA REDUCTION"?

WHAT DOES THE DATA OF GAMMA-RAY INSTRUMENTS LOOK LIKE?

DATA What do I need to go from data to physical quantities?

How to determine the validity of data?

WHAT IS "DATA REDUCTION"?

9

DATA-TAKING

REAL DATA FROM A GAMMA-RAY INSTRUMENT

EVENT_ID	TIME	RA	DEC	ENERGY
	s	deg	deg	TeV
int64	float64	float32	float32	float32
18184891531583	139533040.89130569	284.92114	2.3147857	8.494793
18210661335308	139533064.76603198	284.68036	2.1020594	1.2389338
18214956302833	139533070.2015779	284.57544	2.641703	3.212592
18223546236968	139533075.5970521	285.67664	1.9790567	0.50208473
18223546237257	139533077.386261	286.9335	1.7020291	19.793955
18227841204705	139533082.1508355	285.97955	1.0685997	1.273117
18245021073483	139533096.00451803	284.84094	3.5419352	25.999714
18257905975463	139533108.47312307	283.92752	2.3060772	0.81107205
18262200943041	139533114.4788592	285.01868	4.477947	0.6513306
18270790877414	139533121.14376855	284.47827	4.6750755	0.5971853
18296560681602	139533147.5147109	284.61392	3.4823265	0.76477724
18300855648487	139533149.4298861	286.3041	2.4164367	0.96899956
18313740550377	139533161.2780261	284.2054	3.1820278	0.5589061
18322330485363	139533171.584491	284.23578	1.9863799	0.83051723
18335215387058	139533182.66867948	288.14926	1.5052232	1.3813052
		005 77677		-

CAN YOU TELL ME WHICH ONE?

- A UNIFIED FORMAT AND TOOL FOR GAMMA-RAY ASTRONOMY
 - ▶ IN THE PAST DECADE OR SO, THERE HAS BEEN A BIG EFFORT TO DEFINE A STANDARD FORMAT TO USE WHEN STORING GAMMA-RAY ASTRONOMY DATA
 - BY FORMAT I MEAN WHICH COLUMNS/QUANTITY NAMES AND SO ON
 - Learned from existing standards, such as x-ray data and Fermi
 - RESULT: GAMMA-ASTRO-DATA-FORMAT
 - IF ALL DATA LOOKS THE SAME, WE CAN ALL SHARE A TOOL!
 - RESULT: GAMMAPY

A UNIFIED FORMAT AND TOOL FOR GAMMA-RAY ASTRONOMY

A UNIFIED FORMAT AND TOOL FOR GAMMA-RAY ASTRONOMY

A UNIFIED FORMAT AND TOOL FOR GAMMA-RAY ASTRONOMY

HIGHLY INSTRUMENT SPECIFIC

INSTRUMENT AGNOSTIC

Event List

LIST OF GAMMA-LIKE EVENTS

ENERGY	DEC	RA	TIME	EVENT_ID
TeV	deg	deg	s	
float32	float32	float32	float64	int64
8.494793	2.3147857	284.92114	139533040.89130569	18184891531583
1.2389338	2.1020594	284.68036	139533064.76603198	18210661335308
3.212592	2.641703	284.57544	139533070.2015779	18214956302833
0.50208473	1.9790567	285.67664	139533075.5970521	18223546236968
19.793955	1.7020291	286.9335	139533077.386261	18223546237257
1.273117	1.0685997	285.97955	139533082.1508355	18227841204705
25.999714	3.5419352	284.84094	139533096.00451803	18245021073483
0.81107205	2.3060772	283.92752	139533108.47312307	18257905975463
0.6513306	4.477947	285.01868	139533114.4788592	18262200943041
0.5971853	4.6750755	284.47827	139533121.14376855	18270790877414
0.76477724	3.4823265	284.61392	139533147.5147109	18296560681602
0.96899956	2.4164367	286.3041	139533149.4298861	18300855648487
0.5589061	3.1820278	284.2054	139533161.2780261	18313740550377
0.83051723	1.9863799	284.23578	139533171.584491	18322330485363
1.3813052	1.5052232	288.14926	139533182.66867948	18335215387058
		000 77677	100500100 070710	

EVENT LIST

LIST OF GAMMA-LIKE EVENTS

ENERGY	DEC	RA	TIME	EVENT_ID
TeV	deg	deg	s	
float32	float32	float32	float64	int64
8.494793	2.3147857	284.92114	139533040.89130569	18184891531583
1.2389338	2.1020594	284.68036	139533064.76603198	18210661335308
3.212592	2.641703	284.57544	139533070.2015779	18214956302833
0.50208473	1.9790567	285.67664	139533075.5970521	18223546236968
19.793955	1.7020291	286.9335	139533077.386261	18223546237257
1.273117	1.0685997	285.97955	139533082.1508355	18227841204705
25.999714	3.5419352	284.84094	139533096.00451803	18245021073483
0.81107205	2.3060772	283.92752	139533108.47312307	18257905975463
0.6513306	4.477947	285.01868	139533114.4788592	18262200943041
0.5971853	4.6750755	284.47827	139533121.14376855	18270790877414
0.76477724	3.4823265	284.61392	139533147.5147109	18296560681602
0.96899956	2.4164367	286.3041	139533149.4298861	18300855648487
0.5589061	3.1820278	284.2054	139533161.2780261	18313740550377
0.83051723	1.9863799	284.23578	139533171.584491	18322330485363
1.3813052	1.5052232	288.14926	139533182.66867948	18335215387058
-		205 77627	120522100 072710	100100000001001

GOOD TIME INTERVALS (GTI)

TIME RANGES WHEN THE INSTRUMENT WAS TAKING DATA

STOP	START	
Time	Time	
53524.985685	53524.96611324074	

Event List

LIST OF GAMMA-LIKE EVENTS

EVENT_ID	TIME	RA	DEC	ENERGY
	s	deg	deg	TeV
int64	float64	float32	float32	float32
18184891531583	139533040.89130569	284.92114	2.3147857	8.494793
18210661335308	139533064.76603198	284.68036	2.1020594	1.2389338
18214956302833	139533070.2015779	284.57544	2.641703	3.212592
18223546236968	139533075.5970521	285.67664	1.9790567	0.50208473
18223546237257	139533077.386261	286.9335	1.7020291	19.793955
18227841204705	139533082.1508355	285.97955	1.0685997	1.273117
18245021073483	139533096.00451803	284.84094	3.5419352	25.999714
18257905975463	139533108.47312307	283.92752	2.3060772	0.81107205
18262200943041	139533114.4788592	285.01868	4.477947	0.6513306
18270790877414	139533121.14376855	284.47827	4.6750755	0.5971853
18296560681602	139533147.5147109	284.61392	3.4823265	0.76477724
18300855648487	139533149.4298861	286.3041	2.4164367	0.96899956
18313740550377	139533161.2780261	284.2054	3.1820278	0.5589061
18322330485363	139533171.584491	284.23578	1.9863799	0.83051723
18335215387058	139533182.66867948	288.14926	1.5052232	1.3813052
		005 77677		5 40 40 50 50 4

GOOD TIME INTERVALS (GTI)

TIME RANGES WHEN THE INSTRUMENT WAS TAKING DATA

STOP	START	
Time	Time	
53524.985685	53524.96611324074	

THESE LISTS ARE PREPARED BY THE PEOPLE FROM EACH INSTRUMENT AND REPRESENT "SCIENCE-READY" DATA OR "DATA LEVEL 3"

WHAT DOES THE DATA OF GAMMA-RAY INSTRUMENTS LOOK LIKE?

DATA WHAT DO I NEED TO GO FROM DATA TO PHYSICAL QUANTITIES?

HOW TO DETERMINE THE VALIDITY OF DATA?

▶ WHAT IS "DATA REDUCTION"?

FROM "EVENTS" TO PHYSICS

LET'S SAY YOU HAVE A LIST OF EVENTS TAKEN BY A GAMMA-RAY INSTRUMENT WHEN OBSERVING A SOURCE, AND YOU WANT TO STUDY THAT SOURCE.

THIS IS DATA REDUCTION

FROM "EVENTS" TO PHYSICS

LET'S SAY YOU HAVE A LIST OF EVENTS TAKEN BY A GAMMA-RAY INSTRUMENT WHEN OBSERVING A SOURCE, AND YOU WANT TO STUDY THAT SOURCE.

You can make a map! Which is just a 2D histogram of the sky coordinates

THIS IS DATA REDUCTION

FROM "EVENTS" TO PHYSICS

LET'S SAY YOU HAVE A LIST OF EVENTS TAKEN BY A GAMMA-RAY INSTRUMENT WHEN OBSERVING A SOURCE, AND YOU WANT TO STUDY THAT SOURCE.

You can make a map! Which is just a 3D histogram of the sky coordinates and energy*

DATASET.COUNTS.PLOT_GRID()

* OR TIME, OR SOME OTHER QUANTITY...

FROM "EVENTS" TO PHYSICS

LET'S SAY YOU HAVE A LIST OF EVENTS TAKEN BY A GAMMA-RAY INSTRUMENT WHEN OBSERVING A SOURCE, AND YOU WANT TO STUDY THAT SOURCE.

You can make a map! Which is just a 3D histogram of the sky coordinates and energy

MEASURING IS NOT PERFECT! INSTRUMENTS INTRODUCE BIASES, INACCURACIES,...

- WE MEASURE X COUNTS FROM THE SOURCE → HOW BRIGHT IS IT?
- ► THE COUNTS "BLOB" HAS A SPATIAL EXTENT → WHAT IS THE ACTUAL SIZE OF THE SOURCE?
- WE ONLY SEE A SOURCE IN THE MIDDLE → BUT DID WE OBSERVE OTHER PARTS OF THE MAP AS MUCH?
- ► THE MEASURED COUNTS HAVE AN ENERGY DISTRIBUTION → WHAT IS THE SPECTRUM OF THE SOURCE?

EVENTS ARE NOT ENOUGH! WE ALSO NEED THE INSTRUMENT RESPONSE

INSTRUMENT RESPONSE FUNCTIONS

HOW MANY OF THE ARRIVING GAMMA-RAYS DO WE DETECT?

- ▶ HOW MANY DO WE MISS-CLASSIFY?
- HOW WRONG DO WE GET THEIR ENERGY?
- How wrong do we get their direction?
- HOW MUCH BACKGROUND DO WE LET THROUGH?

INSTRUMENT RESPONSE FUNCTIONS

HOW MUCH BACKGROUND DO WE LET THROUGH?

ENERGY DISPERSION

 $EDISP(E_{true}, E_{reco})$

FOR EACH TRUE GAMMA-RAY ENERGY, WHAT IS THE PROBABILITY THAT THE EVENT GETS ASSIGNED A CERTAIN RECONSTRUCTED ENERGY?

DATASET.EDISP.PEEK()

POINT-SPREAD FUNCTION $PSF(E_{true}, x_{reco}, x_{true})$

> FOR EACH TRUE GAMMA-RAY ARRIVING DIRECTION, WHAT IS THE PROBABILITY THAT THE EVENT GETS ASSIGNED A CERTAIN RECONSTRUCTED DIRECTION ?

EFFECTIVE AREA

 $Aeff(E_{true})$

DETECTION PROBABILITY OF THE GAMMA-RAY (DUE TO ENERGY THRESHOLD + BAD CLASSIFICATION + INSTRUMENTED AREA)

> OFTEN MULTIPLIED BY **LIVETIME** TO OBTAIN "EFFECTIVE EXPOSURE" IN UNITS OF M²S

SO NOW WE KNOW HOW A SOURCE SHOULD LOOK LIKE!

How would a point source with a Crab like spectrum look like in our detector?

- FROM THE **SPECTRUM** WE KNOW THE FLUX (COUNTS/S/TEV/CM2 IN TRUE ENERGY)
- WITH PSF WE SHIFT FROM TRUE TO RECONSTRUCTED POSITION

DATASET.NPRED_SIGNAL().PLOT_GRID()

- WITH AEFF AND LIVETIME WE GO FROM FLUX TO COUNTS (COUNTS/TEV IN TRUE ENERGY)
- WITH EDISP WE SHIFT FROM TRUE TO RECONSTRUCTED ENERGY (COUNTS/TEV IN RECONSTRUCTED ENERGY)
- WE NOW CAN PREDICT WHAT WE WOULD OBSERVE IF THE MODEL WAS A GOOD DESCRIPTION OF REALITY!

) 3-4th

 $\frac{dN_{\gamma}}{dE_{true}}(x_{true})$

IS THAT ALL?

Gammapy Workshop – Data Analysis

IS THAT ALL?

Gammapy Workshop – Data Analysis

BACKGROUND

 $N_{bkg}(E_{reco})$

SEE MOHRMANN ET AL 2019 TO SEE HOW IACTS "CAUGHT UP" WITH THE OTHER INSTRUMENTS ;-)

HOW MANY BACKGROUND EVENTS DO WE EXPECT TO MIS-CLASSIFY AS SIGNAL?

A LITTLE BIT DIFFERENT: USUALLY DERIVED FROM DATA OF REGIONS WITH NO SOURCES

- ▶ "EASY" IN WIDE-FIELD INSTRUMENTS, AS THE WHOLE SKY IS RATHER EMPTY IN THE TEV RANGE
- CHALLENGE FOR POINTED INSTRUMENTS WITH SMALL FIELD OF VIEW: USUALLY NEED TO ASSUME WHERE YOU EXPECT YOUR SOURCE TO BE (BIAS!!!)

DATASET.BACKGROUND.PLOT_GRID()

BACKGROUND

 $N_{bkg}(E_{reco})$

See <u>Mohrmann et al 2019</u> to see how IACTs "caught up" with the other INSTRUMENTS ;-)

3-4th Dec 2024

Gammapy Workshop - Data Analysis

36

NOW ALL TOGETHER

WHAT DOES THE DATA OF GAMMA-RAY INSTRUMENTS LOOK LIKE?

WHAT DO I NEED TO GO FROM DATA TO DATA PHYSICAL QUANTITIES?

▶ HOW TO DETERMINE THE VALIDITY OF DATA?

▶ WHAT IS "DATA REDUCTION"?

IN WHICH RANGE IS MY DATA "VALID"?

THE IRFS ALSO PROVIDE A VERY IMPORTANT TOOL IN SELECTING OUR ANALYSIS RANGE OF VALIDITY

Œ

IN WHICH RANGE IS MY DATA "VALID"?

THE IRFS ALSO PROVIDE A VERY IMPORTANT TOOL IN SELECTING OUR ANALYSIS RANGE OF VALIDITY

REMEMBER: THEY ARE MADE WITH SIMULATIONS. SO THEY RELY HEAVILY ON MC/DATA CONSISTENCY

→ RANGES WHERE IRFS CHANGE RAPIDLY CAN BE DANGEROUS!

IN WHICH RANGE IS MY DATA "VALID"?

THE IRFS ALSO PROVIDE A VERY IMPORTANT TOOL IN SELECTING OUR ANALYSIS RANGE OF VALIDITY

REMEMBER: THEY ARE MADE WITH SIMULATIONS. SO THEY RELY HEAVILY ON MC/DATA CONSISTENCY

→ RANGES WHERE IRFS CHANGE RAPIDLY CAN BE DANGEROUS!

WHAT DOES THE DATA OF GAMMA-RAY INSTRUMENTS LOOK LIKE?

DATA What do I need to go from data to physical quantities?

How to determine the validity of data?

▶ WHAT IS "DATA REDUCTION"?

SELECT AND READ DATA

```
FROM GAMMAPY.DATA IMPORT DATASTORE
```

OBSERVATIONS[0].PSF.PEEK() #PSF
OBSERVATIONS[0].BKG.PEEK() #BKG

```
# READ BUNDLE OF EVENT LIST, GTI AND THEIR CORRESPONDING IRF
DATA_STORE = DATASTORE.FROM_DIR("$GAMMAPY_DATA/HESS-DL3-DR1")
# SELECT RUNS AROUND THE CRAB (ONLY NEEDED FOR POINTING OBSERVATIONS!)
SELECTION = DICT(
   TYPE="SKY_CIRCLE",
   FRAME="ICRS",
   LON="83.633 DEG",
   LAT="22.014 DEG",
   RADIUS="5 DEG",
)
SELECTED_OBS_TABLE = DATA_STORE.OBS_TABLE.SELECT_OBSERVATIONS(SELECTION)
OBSERVATIONS = DATA_STORE.GET_OBSERVATIONS(SELECTED_OBS_TABLE["OBS_ID"])
# LOOK AT DATA
OBSERVATIONS[0].EVENTS.TABLE # EVENT TABLE
OBSERVATIONS[0].GTI.TABLE # EVENT TABLE
                                           IN "DETECTOR" COORDINATES
OBSERVATIONS[0].AEFF.PEEK() #AEFF
                                           (OFFSET, ZENITH...)
OBSERVATIONS[0].EDISP.PEEK() #EDISP
```


REDUCE DATA GO FROM DETECTOR TO SKY COORDINATES AND BUNDLE

FROM GAMMAPY.MAPS IMPORT WCSGEOM, MAPAXIS FROM GAMMAPY.DATASETS IMPORT MAPDATASET FROM REGIONS IMPORT CIRCLESKYREGION

Define energy axes

ENERGY_AXIS = MAPAXIS.FROM_ENERGY_BOUNDS(1.0, 10.0, 10, UNIT="TEV") ENERGY_AXIS_TRUE = MAPAXIS.FROM_ENERGY_BOUNDS(0.5, 20, 40, UNIT="TEV", NAME="ENERGY_TRUE") # ALWAYS MORE RANGE AND MORE BINS THAN RECO!

```
# Define the sky geometry
geom = WcsGeom.create(
    skydir=(83.633, 22.014),
    Binsz=0.02,
    width=(2, 2),
    FRAME="icrs",
    proj="CAR",
    Axes=[energy_axis],
)
```

CREATE AN EMPTY DATASET
STACKED = MAPDATASET.CREATE(GEOM=GEOM, ENERGY_AXIS_TRUE=ENERGY_AXIS_TRUE, NAME="CRAB-STACKED")

REDUCE DATA GO FROM DETECTOR TO SKY COORDINATES AND BUNDLE

```
MAKER = MapDatasetMaker()
MAKER_SAFE_MASK = SAFEMASKMAKER(METHODS=["OFFSET-MAX", "AEFF-MAX"], OFFSET_MAX="2.5 deg")
CIRCLE = CIRCLESKYREGION(CENTER=SKYCOORD("83.63 DEG", "22.14 DEG"), RADIUS=0.2 * U.DEG)
EXCLUSION_MASK = GEOM.REGION_MASK(REGIONS=[CIRCLE], INSIDE=FALSE)
MAKER_FOV_BKG = FoVBackgroundMaker(method="fit", exclusion_mask=exclusion_mask)
FOR OBS IN OBSERVATIONS:
    # FIRST A CUTOUT OF THE TARGET MAP IS PRODUCED
    CUTOUT = STACKED.CUTOUT(
        OBS.GET_POINTING_ICRS(OBS.TMID), WIDTH=2 * OFFSET_MAX, NAME=F"OBS-{OBS.OBS_ID}"
    # A MAPDATASET IS FILLED IN THIS CUTOUT GEOMETRY
    DATASET = MAKER.RUN(CUTOUT, OBS)
    # THE DATA QUALITY CUT IS APPLIED
    DATASET = MAKER_SAFE_MASK.RUN(DATASET, OBS)
    # FIT BACKGROUND MODEL
    DATASET = MAKER FOV.RUN(DATASET)
    PRINT(
        F"BACKGROUND NORM OBS {OBS.OBS ID}: {DATASET.BACKGROUND MODEL.SPECTRAL MODEL.NORM.VALUE:.2F}"
    # THE RESULTING DATASET CUTOUT IS STACKED ONTO THE FINAL ONE
    STACKED.STACK(DATASET)
```


-

DEEINE THE MAKERS

(C)

47

48