

Exploring the possible bubble nucleus ⁴⁶Ar

Nuclear Saturation properties and shell structure

ARTICLES

³⁴Si nucleus

A saturated nuclear density ?

- Liquid-drop model dating back to 1929 •
- Saturated nuclear matter •
- First evidence for a bubble in ³⁴Si •
- Renewed interest in nuclear radii: ٠ large charge radii
- Shell structure <-> radii and bubbles •

M. Stanoiu⁵, S. R. Stroberg^{4,8}, J. A. Tostevin⁹, M. Vandebrouck¹, D. Weisshaar³ and K. Wimmer^{3,10,11}

⁴⁶Ar: close to stability, but do we understand its structure ?

The N=28 shell closure

- The N=28 weakens below ⁴⁸Ca
- In ⁴⁶Ar almost one neutron in $p_{3/2}$
- Empirical shell-model Hamiltonians like SDPF-U reproduce the neutron observables very well

Do we understand physics at N=28, Z=18?

Neutron observables understood

Excellent theory for neutron-space related quantities:

- confirming N=28 shell closure in ⁴⁶Ar
- SDPF interaction describes valance-core neutrons interaction very well

Large discrepancy in B(E2)

Large discrepancy with the measured B(E2) value at N=28:

problem with the proton E2 contribution ?

A. Gade et al., PRC 68, 014302 (2003)

S. Calinescu et al., PRC 93, 044333 (2016)

Z. Meisel et al. PRL 114, 022501 (2015)

Do we understand physics at N=28?

Neutron observables understood 6 SDPF-MU SDPF-U -5 AME 2012 Fhis expt. E2+, NNDC D_n [MeV] 2 0 26 28 30 24 Ν

Excellent theory for neutron-space related quantities:

- confirming N=28 shell closure in ⁴⁶Ar
- SDPF interaction describes valance-core neutrons interaction very well

Large discrepancy in B(E2)

Large discrepancy with the measured B(E2) value at N=28:

problem with the proton E2 contribution ?

A. Gade et al., PRC 68, 014302 (2003)

S. Calinescu et al., PRC 93, 044333 (2016)

Z. Meisel et al. PRL 114, 022501 (2015)

Problem with the predicted proton wave

function (?)

A. Gade et al., PRC 68, 014302 (2003)

S. Calinescu et al., PRC 93, 044333 (2016)

L. A. Riley et al., PRC 72, 024311 (2005)

 Similar discrepancy in ⁴⁴S, located –2p with respect to ⁴⁶Ar

- Intermediate-energy Coulomb excitation measurements in agreement with the SDPF-U results up to ⁴²S
- Effect of polarization charges on B(E 2) calculations is found not sufficient to justify the discrepancy in ⁴⁶Ar and ⁴⁴S

Need to probe the proton wave function predicted by SDPF:

Example: $\pi s_{1/2}$ almost full or empty in ⁴⁶Ar to decrease B(E2) to exp. value

Smaller effect from N=28 quenching: with $vp_{3/2}$ almost full, B(E2)_{up} in ⁴⁶Ar still ~ 350 e²fm⁴

Direct proton transfer in inverse kinematics

d laboratory angular distribution

⁴⁶Ar predicted wave function

AGATA-GRIT-VAMOS Workshop Ganil 2025

[Banks, S. et al., Nucl. Phys. A 437 2 (1985)]

Direct proton transfer in inverse kinematics @ GANIL Spiral 1

AGATA-MUGAST-VAMOS-HeCTOR

[1] F.Galtarossa et al., NIM A 165830 (2021)

Setup for a complete measurement of reaction-related observables

- HeCTOr: Cryogenic (6 K) ³He target, 3 mm thick 1 mg/cm²
- AGATA: γ -ray tracking array, 40 crystals, 10% efficiency
- MUGAST: array of high-granularity DSSD detectors for light ejectiles
- VAMOS: mass spectrometer
- CATS2: beam tracking gas detectors

Data analysis: angular distributions

⁴⁶Ar(³He,d)47K

Results

Particle spectra from MUGAST-VAMOS coinc. L=0 0 MeV C²S=1.55 do/dΩ [mb/sr] Optical potential tested on ⁴⁸Ca(d, ³He)⁴⁷K data L=2 0.36 MeV C²S=4.16 Data do/d0 [mb/sr] Ref. pot. Han + Ref. pot Han + Trost Han + Becchett Han + Lian 10-10 15 20 2 10 25 30 35 Angle [deg 10⁻² ± 20 25 5 10 15 Elastic scattering of the o/o_R 47 K(*d*,*d*) 47 K reaction

@ 7.52 MeV/u: tested on recent data acquired with the same setup [Paxman, C. and the e793s collaboration. Priv. Comm]

$\mathbf{C}^2 \mathbf{S}[L] / \mathbf{C}^2 \mathbf{S}[L = 0]$	3/2⁺ state	7/2- state
SDPF-U	0.63	2.6
Experiment		

The proton WF of the g.s. of ⁴⁶Ar is not

Results

@ 7.52 MeV/u: tested on recent data acquired at the same setup [Paxman, C. and the e793s collaboration. Priv. Comm]

Spectroscopic factors

The SM (SDPF-U) fails the comparison with experimental data in terms of C^2S .

$\mathbf{C}^2 \mathbf{S}[L] / \mathbf{C}^2 \mathbf{S}[L = 0]$	3/2 ⁺ state	7/2 ⁻ state
SDPF-U	0.63	2.6
Experiment	$0.10^{+0.11}_{-0.10}$	$1.10^{+0.18}_{-0.15}$

$\pi s_{1/2}$ empty, $\pi d_{3/2}$ full !

The proton WF of the g.s. of ⁴⁶Ar is not correctly described

Ab-initio model NNLO_{sat}: shell structure

Ab-initio calculations

- Ab-initio calculations with the NNLOsat in ADC2 and ADC3 (C. Barbieri, S. Brolli, V. Somà)
- NNLO_{SAT} chosen because of its capability of reproducing radii (cross check with the NNLO_{Inl} in ADC2)
- 14 harmonic oscillator shells and $\hbar\Omega$ =22 MeV to optimize the convergence of binding energies
- BE and charge radii well in agreement with ⁴⁸Ca and ⁴⁶Ar data
- SF in ⁴⁶Ar in agreement with data

And the B(E2) ?

B(E2) puzzle solved ?

- Naive considerations: by closing the d_{3/2} shell the restricted proton space will return a small B(E2) -> confirmed by SM calculations
- Mapping the NNLOsat χEFT Hamiltonian into the effective meanfield orbits generated by SCGF ADC(3) *Phys. Rev. C 100, 024,317 (2019)*
- The Hamiltonian was then diagonalized, with Antoine adjusting SP energies to reproduce experimental ⁴⁶Ar, ⁴⁷K level schemes: B(E2, 2⁺→0⁺)= 30 e²fm⁴

One question arises: if ⁴⁶Ar is magic, how can we justify a 2⁺ at only 1.6 MeV ? Where is SDPF-U shell model (so) wrong ?

⁴⁵Ar(d,p)⁴⁶Ar to probe the neutron content of the 2⁺ state

Possible neutron wave function

- 2⁺ is an a priori proton state, but if πd_{3/2} is closed it should come above 2 MeV
- N=28 core breaking $v f_{7/2}$ -p_{3/2} contributions are possible
- We propose to investigate this state via ⁴⁵Ar(d,p)⁴⁶Ar
- We will get a multiplet of states ν f_{7/2}-p_{3/2}: 2⁺...5⁺

K.Nowak et al., Phys. Rev. C 93, 044335 (2016)

SDPF-U 4p-4h: how well does it describe the N=28 breaking ?

Experimental details ⁴⁵Ar(d,p)⁴⁶Ar

- AGATA-GRIT (backwards) : γ rays necessary to disentangle the multiplet !
- VAMOS to distinguish fusion on CD₂ (10⁵ Hz on focal plane ?)
- We will check the excited state neutron content prediction from different Hamiltonians

Reac/day (5⁺)(σ_{sp} =10 mbarn)= 2000 Reac/day (2⁺₃)(σ_{sp} =10 mbarn)= 100 Reac/day (2⁺₁)(σ_{sp} =10 mbarn)= 1000

 <u>Requirements: ⁴⁵Ar, ~ 1.5 10⁵ pps, ~ 8-10 MeV/u, AGATA-GRIT(backwards)-VAMOS at</u> zero degree (⁴⁵Ar @ 10⁶ pps would be desirable !)

47 K(t, α) 46 Ar to probe the proton content of the 2⁺ state

Possible proton wave function

- 2⁺ is an a priori proton state, should be strongly populated by (t, α)
- 1/2⁺ gs in ⁴⁷K: π s_{1/2} \otimes 1/2⁺: 0⁺
- 1/2+ gs in ⁴⁷K: $\pi d_{3/2} \otimes 1/2^+: 0^+, 2^+$
- 1/2⁺ gs in ⁴⁷K: πd_{5/2} ⊗ 1/2⁺: 0⁺,2⁺,3⁺
- ~ 200 reac/day

<u>Requirements: ⁴⁷K, ~ 10⁶ pps, ~ 10 MeV/u, AGATA-GRIT(backwards)-VAMOS at zero degree</u>

THANK YOU FOR YOUR ATTENTION !