

Probing T=0 proton-neutron pairing in the super-collective Z~60 and A~130 region

Jérémie Dudouet¹, Marlène Assié² and anyone interested

¹Institut de Physique des 2 infinis de Lyon (IP2I) ²Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

Probing mixed-spin np pairing in the super-collective Z~60 and A~130 region

GRIT-AGATA-VAMOS Workshop, GANIL, 11-13/06/2025

 \blacktriangleright We should be able to observe experimentally T=0 (n-p) and T=1 (n-n/n-p/p-p) pairing

Jérémie Dudouet: j.dudouet@jp2i.in2p3.fr

According to Fermi statistics, for two nucleons in the same spatial orbital, T (isospin) + S (spin) = 1

> The existence of the deuteron implies spin-triplet pairing stronger than spin-singlet

> So why is spin-singlet pairing the most commonly observed across the nuclear chart? Because protons and neutrons usually occupy different shells.

 \blacktriangleright Can such a pairing phase be accessed experimentally in heavier N \approx Z nuclei?

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

> Hints on p-n pairing effect in N=Z nuclei: The binding energy anomaly in N=Z nuclei

> N=Z nuclei systematically show an enhanced correlation energy

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

Figure from H. Jacob, data from ENSDF, produced with TkN.

2 July 1998

Pairing and the structure of the *pf*-shell $N \sim Z$ nuclei

Alfredo Poves^a, Gabriel Martinez-Pinedo^{b,1}

^a Departamento de Física Teórica, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain ^b W.K. Kellogg Radiation Laboratory, 106-38, California Institute of Technology, Pasadena, CA 91125, USA

> Received 20 February 1998 Editor: J.-P. Blaizot

It has been suggested that the spin-orbit interaction suppresses spin-triplet pairing.

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

PHYSICS LETTERS B

PHYSICAL REVIEW C 81, 064320 (2010)

Spin-triplet pairing in large nuclei

G. F. Bertsch and Y. Luo

Institute for Nuclear Theory and Department of Physics, University of Washington, Seattle, Washington, USA (Received 4 January 2010; published 23 June 2010)

The spin-orbit field has a surface effect: \rightarrow T=0 pairing will dominate when the surface-to-volume ratio is low

 \blacktriangleright The lightest nuclei expected to host a well-developed spin-triplet condensate are for A \approx 130–140.

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

Probing mixed-spin np pairing in the super-collective Z~60 and A~130 region

PRL 106, 252502 (2011)

PHYSICAL REVIEW LETTERS

Ş

Mixed-Spin Pairing Condensates in Heavy Nuclei

Alexandros Gezerlis,¹ G. F. Bertsch,^{1,2} and Y. L. Luo¹ ¹Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA ²Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1560, USA (Received 31 March 2011; published 23 June 2011)

Confirmation of an island of T=0 pairing nuclei, experimentally accessible

> The evolution from triplet to singlet pairing may proceed through a mixed-spin condensate configuration.

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

Probing mixed-spin np pairing in the super-collective Z~60 and A~130 region

> Confirmation of an island of T=0 pairing nuclei, experimentally accessible

→ The evolution from triplet to singlet pairing may proceed through a mixed-spin condensate configuration.

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

Spin-Triplet Pairing in Heavy Nuclei Is Stable against Deformation

Georgios Palkanoglou⁽⁾,^{1,2} Michael Stuck⁽⁾,¹ and Alexandros Gezerlis⁽⁾ ¹Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada ²TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

(Received 22 February 2024; accepted 4 December 2024; published 23 January 2025)

> Very recent studies introduce for the first time deformation in the spin-triplet pairing predictions

> Deformation reduces p-n correlations, but more spin-singlet than spin-triplet Spin-triplet superfluidity still exists below the proton drip line

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

PHYSICAL REVIEW LETTERS 134, 032501 (2025)

> Very recent studies introduce for the first time deformation in the spin-triplet pairing predictions

→ Deformation is found to reduce p-n correlations, especially for spin-singlet pairing

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

¹⁰⁸Xe correlation energy as a function of quadrupole deformation

> Very recent studies introduce for the first time deformation in the spin-triplet pairing predictions

Deformation is found to reduce p-n correlations, especially for spin-singlet pairing

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

> Very recent studies introduce for the first time deformation in the spin-triplet pairing predictions

→ Deformation is found to reduce p-n correlations, especially for spin-singlet pairing Spin-triplet superfluidity still exists below the proton drip line, for ^{125, 126, 127}Pm

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

What about deformation in this region

B(E2): $2^+ \rightarrow 0^+$: mostly used indicator of collectivity Weisskopf unit: rough estimate of the number of nucleons involved in the transition based on a single-particle transition model.

The rare-earth region is predicted to be the place of the highest collective modes of the nuclear chart in the ground state configuration with values up to $B(E2)/A \sim 2 W.u$ single-particle model not valid \rightarrow fully collective motion of the nucleons

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

What about deformation in this region

Calculated values

The most proton-rich nuclei measured so far in this region have already values up to 1.5, and are in reasonable agreement with the theoretical values.

Jérémie Dudouet: j.dudouet@jp2i.in2p3.fr

Measured values

What about deformation in this region

Calculated values

The same applies for $R_{4/2}$, with values approaching the rigid rotor limit of 3.3

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

 $R_{4/2} = E(4^+)/E(2^+)$

Measured values

The rare-earth region is:

the unique chance to have signs of a proton-neutron mixed-spin pairing

> And both seem to be correlated !

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

the place of the highest predicted deformations in ground state configuration

Experimental setup - a bit of history

The E404aS experiment performed in 2004 at GANIL: \Rightarrow ⁷⁶Kr (a) 4.3 MeV/A (5x10⁵ pps) + ⁵⁸Ni target in fusion evaporation

- → 11 EXOGAM clovers
- ► VAMOS spectrometer (almost not used due to technical issues)
- → DIAMANT CsI detector system for tagging light charged particles
- → 7 days of beam time (but only 4 of effective data taking)

Identification of gamma rays in nuclei around the dripline nucleus ¹³⁰Sm: probing E404aS the maximally deformed light rare-earth region

P.J. Nolan, A.J. Boston, R.J. Cooper, M.R. Dimmock, S. Gros, B.M. McGuirk, E.S. Paul, M. Petri, H.C. Scraggs, G. Turk¹ N. Redon, D. Guinet, Ph. Lautesse, M. Meyer, B. Rossé, Ch. Schmitt, O. Stézowski² G. De France, S. Bhattachasyya, G. Mukherjee, F. Rejmund, M. Rejmund, H. Savajols³ J.N. Scheurer3 A. Astier⁴ I. Deloncle, A. Prévost⁵ B.M. Nyakó, J. Gál, J. Molnár, J. Timár, L. Zolnai6 K. Juhász⁷ V.F.E. Pucknell⁸ R. Wadsworth, P. Joshi9 G. La Rana, R. Moro, M. Trotta, E. Vardaci¹⁰ G. Ball, G. Hackman¹¹

Jérémie Dudouet: <u>i.dudouet@jp2i.in2p3.fr</u>

Experimental setup - a bit of history

Similar experiment performed in 2004: the E404aS experiment: → ⁷⁶Kr (*a*) 4.3 MeV/A (5x10⁵ pps) + ⁵⁸Ni target in fusion evaporation

Only DIAMANT could be used to tag the reaction > Spectroscopy up to ¹²⁸Nd and ¹³⁰Pm, not proton-rich enough for the mixed-spin pairing studies

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

Experimental setup - a bit of history

Similar experiment performed in 2004: the E404aS experiment: → ⁷⁶Kr (a) 4.3 MeV/A (5x10⁵ pps) + ⁵⁸Ni target in fusion evaporation

> The reaction leads to a broad distribution of evaporation channels. > The nuclei of interest were difficult to isolate from the background.

Jérémie Dudouet: j.dudouet@jp2i.in2p3.fr

Experimental setup - could we use a ⁷⁴Kr beam?

A factor of 50 (or 5 with beam dev) lower than the ⁷⁶Kr beam

However, the channels of interest are the most strongly populated !

Jérémie Dudouet: j.dudouet@jp2i.in2p3.fr

From the GANIL web site: ⁷⁴Kr (a) 4.3 MeV/A at 3x10⁴ pps (1x10⁴ in practice, **possible beam dev to 1x10⁵**)

HIVAP calculations

Experimental setup - could we use a ⁷⁴Kr beam ?

From the GANIL web site: ⁷⁴Kr (a) 4.3 MeV/A is given at 3x10⁴ pps (1x10⁴ in practice) ► A factor of 50 lower than the ⁷⁶Kr beam

> But the channels of interest are the most produced one ! > And the cross sections are increased by a factor ranging from 10 to 1000, depending on the channel

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

Experimental setup - could we use a ⁷⁸Sr beam ?

From the GANIL web site: ⁷⁸Sr is possible at 1×10^5 pps with required target development → It then requires a ⁵⁴Fe target (not the easiest one to produce)

 \blacktriangleright Same compound nucleus (¹³²Gd), but cross sections a bit lower (but beam current 10 times more)

Jérémie Dudouet: <u>j.dudouet@jp2i.in2p3.fr</u>

Experimental setup proposed

Jérémie Dudouet: j.dudouet@jp2i.in2p3.fr

Probing mixed-spin np pairing in the super-collective Z~60 and A~130 region

Jérémie Dudouet: j.dudouet@jp2i.in2p3.fr

Merci!

