

SMART + GANIL coupling

How to synchronize and label events across different detectors ?

Outline

This talk is not about...

- Time-of-flight or timing measurements (TAC, etc.)
- Computing/dataflow architecture
- Acquisition software integration

But about...

- The process of assigning global (absolute) timestamps to physical events
- Hardware synchronization across different detectors
- Enabling coherent event correlation in distributed setups

From challenges to solutions: The timeline of Timestamping at GANIL

This presentation aims to shed light on the following key questions:

- I. Where are we today at **GANIL** ?
 - Current **state-of-the-art** solutions and methods we use
- II. What are the **main challenges** we face ?
 - Challenges that pushed us to proposed something new
- III. How does the SMART system address future challenges ?
 - Key concepts and how it addresses our **specific requirements**
- IV. How are we **deploying** it in practice ?
 - Our **phased** development and deployment strategy
- V. What else?
 - **Future questions** to solve over coffee

I. Where are we today at GANIL?

Four representative setups to *illustrate the state-of-art* of timestamping in GANIL

INDRA/FAZIA

- MESYTEC VME DAQ modules with CENTRUM (Clock Event Number Transmitter Receiver Universal Module) and TGV (Trigger Generique VME)

EXOGAM-MEDLEY-PPAC

- GANIL NUMEXO2 DAQ modules with **GTS** (Global Trigger and Synchronization)

ACTAR

- GET (Generic Electronics for TPCs) µTCA DAC with **MUTANT** (**MU**tiplicity, **T**rigger **AN**d **T**ime)

LISE 2024 (MUGAST/CATS/EXOGAM/ZDD)

 GANIL VXI DAQ modules with CENTRUM coupled with NUMEXO2 modules with GTS thanks to AGAVA (AGATA VME Adapter) & TGV gateway

"48-bit timestamp @ 10 ns & 32-bit event number: The universal backbone ensuring time correlation across all systems"

II. What are the main challenges we face?

Aging Standards (VXI)

Maintaining aging standards like VXI is increasingly difficult

Obsolescence (TGV, AGAVA and GTS mezzanines) and Increasing Demand

 Modules such as TGV and AGAVA and GTS mezzanines are now obsolete. At the same time, our experimental needs require an ever-growing number of these modules.

Heterogeneity and Integration Issues

 Coupling and timestamping schemes vary significantly between experiments. This drives the need for reliable gateways and interface modules.

Operational Stability and Documentation Gaps

 Ensuring the long-term stability and robustness of systems like GTS is challenging, especially given the lack of comprehensive technical documentation and support

II.1. A VTC* in response of the lack of TGV

III. 1. How does the SMART system address future GANIL challenges ?

GANIL needs more GTS boards, and it's obsolete

- More than 40 GTS boards on 12 NIM Carrier on use today
- More than 20 GTS boards out of work
- 1 working GTS mezzanine for hardware spare
- \Rightarrow SMART propose an **up to date hardware** solution

The GTS tree needs too much nodes

- For example : **13 GTS nodes** for 24 NUMEXO2 in **EXOGAM** setup
- ⇒ SMART_AMC_ROUTER node can address 15 endpoints ; **3 modules** are needed for **EXOGAM** setup

The GTS is seen at GANIL as a **black box**

=> SMART will be developed, supported and documented by GANIL local team

III. 2. The SMART project

Phase 1 : SMART_AMC Phase 2 : SMART_MCH Phase 3 : SMART_TRIGGER

A minimum of 6 people in GANIL acquisition group involved in the project:

- Project leader, global architecture, firmware, software, CAD :..... Gilles Wittwer
- PCB Routing, component ordering, manufacturing follow-up : Maria Blaizot
- Embedded software (Linux OS, slow control, automatic alignment): Sébastien Coudert/Frédéric Saillant

"More or less two Full-Time Employees for GANIL acquisition group"

III. 3. The SMART_AMC phase

- Up to 240 digitizers or boards synchronized by 17 AMC's (1 HUB & 16 ROUTERS) housed in 2 µTCA shelves.
- 3 SMART_AMC modules (1 HUB + 2 ROUTER) can synchronize up to 30 endpoints. It's equivalent to 14 GTS Mezzanines in 5 GTS NIM Carrier

III. 4. What is on the shelf?

- 3 tests benches : with in each 1 SMART_AMC HUB + 1 SMART_AMC ROUTER + up to 3 BEAST
 - 26 SMART_AMC modules ready to deploy (1st production batch)

III. 4. What is on the shelf? AGATA

3 tests benches : with in each 1 SMART_AMC HUB + 1 SMART_AMC ROUTER + up to 3 BEAST •

26 SMART_AMC modules ready to deploy (1st production batch)

III. 5. What is on the shelf?

SMARTree : the alignment software

- Autonomous system
- Executed on SMART_AMC_HUB
- Setup via **ssh** on nodes
- Based on shell scripts
- POC validated with BEAST

SMART_ENPOINT : the firmware

- ENDPOINT firmware IP supported by GTA
- **Documentation** to make implementation easier
- POC validated in BEAST module
- Under tests on NUMEXO2_REA
- On implementation on MASTER (FASTER

interface with SMART)

by 32 SMART_AMC_ROUTER modules and 1 SMART_MCH housed in 3 µTCA

• **SMART_TRIGGER** will be implemented in this module for AGATA needs

From 240 to **480 End Points** synchronized

ToDo list (Q1/2026 milestone):

shelves

- □ SMART MCH prototype assembly
- SMART MCH prototype for tests (hardware, firmware, software)
- SMART MCH prototype to production
 update (schematics, routing, ...)
- SMART MCH ready to use (automatic alignment + first trigger version)

• Milestone 1 : Q3/2025 : An experimental setup with NUMEXO2_REA

Validation of the **SMARTree** software and **SMART_ENPOINT** on NUMEXO2

Milestone 2 : Q3/2025 : A experimental setup with FASTER and NUMEXO2_REA

Validation of SMART_ENDPOINT in FASTER coupled with NUMEXO2 for TAS experiment

Milestone 3 : Q1/2026 : Deploy SMART in VAMOS-EXOGAM setup

Validation of a setup with NUMEXO2 and **BEAST/VTC as gateway** towards MESYTEC VME modules

Milestone 4 : Q2/2026 : Integration of SMART_ENPOINT in AGATA PACE module

Validation of the last endpoint implementation for AGATA-GRIT-VAMOS

V. What else?

This presentation hasn't covered the full scope of our ongoing work, nor all the open questions to keep exploring together:

SMART_TRIGGER definition for AGATA

- We have to write the functional description of the Trigger for AGATA needs

• SMART_AMC production batch 2 & SMART_MCH production batch

- We have to plan the production of SMART modules to satisfied all expressed needs

SMART_ENDPOINT for MESYTEC modules

- We have to see if the BEAST & VTC gateway fulfill the needs or if we have to go further
- Other timestamping systems (e.g., White Rabbit)
 - Exploring compatibility and potential integration pathways for even broader system interoperability.

Plenty still on our plate—let's keep the discussion going!

Thank you for your attention

	SMART_AMC ROUTER	SMART_AMC HUB	SMART_MCH
PCB (14 layers)	640+150(VAT)	640+150(VAT)	~1000(estimation)
Front panel kit + Drilling + Silkscreen	20 50 70	20 50 70	20 50 70
Assembly + Passive components	850	850	900
Active components (provided)	600	600	700
SOM	2300	2600	9000
UART2USB board	120	120	120
Price/Unit (€)	4800	5100	11860

23