Microscopic origins of shape coexistence at N, $Z \sim 40$ explored through direct transfer

C. J. Paxman (+ significant aid of A. Matta, W. N. Catford and E. Clément) GRIT-AGATA-VAMOS Workshop, 2025

Systematic indications \longrightarrow Detail of shape

First excited 0+ B(E2)'s by CoulEx

GRIT+AGATA+VAMOS, 2025

Ontext ●O	Method 000	The case for ' Kr OO	OOO	Summary O
		Shape coexistence		
	 Different shapes, with a 	distinct properties, at si	milar energies	
	 Long-standing challer 	ige for nuclear structur	e	

- Diverse area of study, requiring many experimental probes
- Microscopic picture is complex, but theory is advancing
- Next frontier: "single-particle" picture, orbital occupation/vacancy etc.

Systematic indications	\longrightarrow Detail of shape \longrightarrow	Microscopic origins
First excited 0+	B(E2)'s by CoulEx	???

Context ●0	Method 000	The case for ⁷⁴ Kr 00	Technical details	Summary O
		Shape coexistence		
	• Different shapes, with di	stinct properties, at sim	nilar energies	

- Long-standing challenge for nuclear structure
- Diverse area of study, requiring many experimental probes
- Microscopic picture is complex, but theory is advancing
- Next frontier: "single-particle" picture, orbital occupation/vacancy etc.
- Best tool for investigating this could be **direct transfer**

Systematic indications	\longrightarrow Detail of shape \longrightarrow	Microscopic origins
First excited 0+	B(E2)'s by CoulEx	Direct transfer?

Context ⊙●	Method 000		

Direct transfer

- Powerful experimental method
- Probe microscopic wavefunction

Shape coexistence

- Critical structural phenomenon
- Limited microscopic understanding

Context ⊙●	Method 000		

Direct transfer

- Powerful experimental method
- Probe microscopic wavefunction

Shape coexistence

- Critical structural phenomenon
- Limited microscopic understanding

Context ⊙●	Method 000		

Direct transfer

- Powerful experimental method
- Probe microscopic wavefunction

Shape coexistence

- Critical structural phenomenon
- Limited microscopic understanding

Method ●○○		

Method ●00		

B. Elbek & P.O. Tjøm Adv. Nucl. Phys. (1969) Context Method The case for ⁷⁴Kr Technical details Summary O

Generated with github.com/wimmer-k/Nilsson/

GRIT+AGATA+VAMOS, 2025

Charlie J. Paxman

Direct transfer for shape coexistence

3

Context Method The case for ⁷⁴Kr Technical details Summary 00 00 00 0

B. Elbek & P.O. Tjøm Adv. Nucl. Phys. (1969)

Generated with github.com/wimmer-k/Nilsson/

GRIT+AGATA+VAMOS, 2025

Charlie J. Paxman

Direct transfer for shape coexisten

- 3

Context Method The case for ⁷⁴Kr Technical details Summary 00 00 00 0

B. Elbek & P.O. Tjøm Adv. Nucl. Phys. (1969)

Generated with github.com/wimmer-k/Nilsson/

GRIT+AGATA+VAMOS, 2025

Charlie J. Paxman

Direct transfer for shape coexistence

- 3

M. N. Vergnes & R. K. Sheline, Phys. Rev. 132 4 (1963)

GRIT+AGATA+VAMOS, 2025

B. Elbek & P. O. Tjøm, Adv. Nucl. Phys. (1969) Charlie J. Paxman

4

GRIT+AGATA+VAMOS, 2025

Charlie J. Paxman

	Method	
)	000	

• Historically used in normal kin. for stable nuclei

• Not used in inverse kin. for radioactive nuclei

Method ○○●		

Analysis of the ${}^{18}F_{g,m}(d,p){}^{19}F$ reactions in the rotational model. PRC **101** 044319 (2020)

Analysis of spectroscopic factors in ¹¹Be and ¹²Be in the Nilsson strong-coupling limit. PRC **97** 011302 (2018)

Spectroscopic factors in the N=20 island of inversion: The Nilsson strong-coupling limit. PRC 96 054302 (2017)

and more ...

B. P. Kay et al.

- Historically used in normal kin. for stable nuclei
- Not used in inverse kin. for radioactive nuclei
- Recent reanalysis of data through this lens...

Context	Method	The case for ⁷⁴ Kr	Technical details	Summary
00	○○●	00		O

Analysis of the ${}^{18}F_{g,m}(d,p){}^{19}F$ reactions in the rotational model. PRC **101** 044319 (2020)

Analysis of spectroscopic factors in ¹¹Be and ¹²Be in the Nilsson strong-coupling limit. PRC **97** 011302 (2018)

Spectroscopic factors in the N=20 island of inversion: The Nilsson strong-coupling limit. PRC **96** 054302 (2017)

and more ...

B. P. Kay et al.

- Historically used in normal kin. for stable nuclei
- Not used in inverse kin. for radioactive nuclei
- Recent reanalysis of data through this lens...
 - ... but no strong experimental drive

Method ○○●		

Analysis of the ${}^{18}F_{g,m}(d,p){}^{19}F$ reactions in the rotational model. PRC **101** 044319 (2020)

Analysis of spectroscopic factors in ¹¹Be and ¹²Be in the Nilsson strong-coupling limit. PRC **97** 011302 (2018)

Spectroscopic factors in the N=20 island of inversion: The Nilsson strong-coupling limit. PRC **96** 054302 (2017)

and more ...

B. P. Kay et al.

- Historically used in normal kin. for stable nuclei
- Not used in inverse kin. for radioactive nuclei
- Recent reanalysis of data through this lens...
 - ... but no strong experimental drive
- High-res, low-b.g. is critical $\rightarrow \gamma$ -ray coincidences?

Method ○○●		

Analysis of the ${}^{18}F_{g,m}(d,p){}^{19}F$ reactions in the rotational model. PRC **101** 044319 (2020)

Analysis of spectroscopic factors in ¹¹Be and ¹²Be in the Nilsson strong-coupling limit. PRC **97** 011302 (2018)

Spectroscopic factors in the N=20 island of inversion: The Nilsson strong-coupling limit. PRC **96** 054302 (2017)

and more ...

B. P. Kay et al.

- Historically used in normal kin. for stable nuclei
- Not used in inverse kin. for radioactive nuclei
- Recent reanalysis of data through this lens...
 - ... but no strong experimental drive
- High-res, low-b.g. is critical $\rightarrow \gamma$ -ray coincidences?
- Unfeasible without GRIT+AGATA+VAMOS

Method ○○●		

Analysis of the ${}^{18}F_{g,m}(d,p){}^{19}F$ reactions in the rotational model. PRC **101** 044319 (2020)

Analysis of spectroscopic factors in ¹¹Be and ¹²Be in the Nilsson strong-coupling limit. PRC **97** 011302 (2018)

Spectroscopic factors in the N=20 island of inversion: The Nilsson strong-coupling limit. PRC **96** 054302 (2017)

and more ...

B. P. Kay et al.

- Historically used in normal kin. for stable nuclei
- Not used in inverse kin. for radioactive nuclei
- Recent reanalysis of data through this lens...
 - ... but no strong experimental drive
- High-res, low-b.g. is critical $\rightarrow \gamma$ -ray coincidences?
- Unfeasible without GRIT+AGATA+VAMOS
- Push the limits: comprehensive, rather than exotic

Method ○○●		

Analysis of the ${}^{18}F_{g,m}(d,p){}^{19}F$ reactions in the rotational model. PRC **101** 044319 (2020)

Analysis of spectroscopic factors in ¹¹Be and ¹²Be in the Nilsson strong-coupling limit. PRC **97** 011302 (2018)

Spectroscopic factors in the N=20 island of inversion: The Nilsson strong-coupling limit. PRC **96** 054302 (2017)

and more ...

B. P. Kay et al.

Consistency of nucleon-transfer sum rules in well-deformed nuclei. PRC 103 024319 (2021)

- Historically used in normal kin. for stable nuclei
- Not used in inverse kin. for radioactive nuclei
- Recent reanalysis of data through this lens...
 - ... but no strong experimental drive
- High-res, low-b.g. is critical $\rightarrow \gamma$ -ray coincidences?
- Unfeasible without GRIT+AGATA+VAMOS
- Push the limits: comprehensive, rather than exotic

Flagship reaction?

Method	The case for ⁷⁴ Kr	Technical details	
$N \sim Z \sim 40$ region			

 N~Z~40 region Well-established shape coexistence 	

M. Bender et al. Phys. Rev. C 74 024312 (2006)

	Method 000	The case for ⁷⁴ Kr ●○		
•	N~Z~40 region Well-established shape coexis ⁷⁴ Kr(d,p) reaction (Z=36, N= Strong basis of other spectroso	tence 38 + 1) copic data	$\begin{array}{c} -9 \\ -10 \\ -11 \\ -11 \\ -12 \\ -12 \\ -12 \\ -14 \\ -15 \\ -16 \\ -17 \\ -0.4 \\ -0.2 \\ 0.0 \\ -0.2 $	
			M. Bender <i>et al.</i> Phys. Rev. C 74 024312 (2006)	

	000	00	000	0
Well- ⁷⁴ Kr(Stron Apex	N~Z~40 region established shape coe d,p) reaction (Z=36, g basis of other spect of shape coexistence	existence N=38 + 1) roscopic data in chain	$\begin{array}{c} -9 \\ -10 \\ -11 \\ -11 \\ -12 \\ -12 \\ -13 \\ -14 \\ -15 \\ -16 \\ -17 \\ -0.4 \\ -0.2 \\ 0.0 \\ -0.0 \\ -0.2 \\ 0.0 \\ -0$	
			-0.4 -0.2 0.0	$\beta_2 = 0.4 - 0.6$

M. Bender et al. Phys. Rev. C 74 024312 (2006)

- Well-established shape coexistence
- 74 Kr(d,p) reaction (Z=36, N=38 + 1)
- Strong basis of other spectroscopic data
- Apex of shape coexistence in chain

• Shapes are strongly mixed (0.4 & -0.2)

The case for ⁷⁴Kr

6

- Well-established shape coexistence
- 74 Kr(d,p) reaction (Z=36, N=38 + 1)
- Strong basis of other spectroscopic data
- Apex of shape coexistence in chain
- Shapes are strongly mixed (0.4 & -0.2)
- Positive feedback from beam team!

M. Bender et al. Phys. Rev. C 74 024312 (2006)

The case for ⁷⁴Kr

- Well-established shape coexistence
- 74 Kr(d,p) reaction (Z=36, N=38 + 1)
- Strong basis of other spectroscopic data
- Apex of shape coexistence in chain
- Shapes are strongly mixed (0.4 & -0.2)
- Positive feedback from beam team!

Prolate: 5/2+[422], 3/2-[312], 1/2+[431], 1/2-[301]

The case for ⁷⁴Kr

- Well-established shape coexistence
- 74 Kr(d,p) reaction (Z=36, N=38 + 1)
- Strong basis of other spectroscopic data
- Apex of shape coexistence in chain
- Shapes are strongly mixed (0.4 & -0.2)
- Positive feedback from beam team!

Prolate: 5/2+[422], 3/2-[312], 1/2+[431], 1/2-[301] Oblate: 9/2+[404], 1/2-[301], 7/2+[413]

The case for ⁷⁴Kr

 From existing spectroscopy of ⁷⁵Kr, can guess at some low-lying Nilsson bands: 5/2+[422] | 0.000, 5/2⁺ 0.187, (7/2)⁺ 0.377, (9/2)⁺ 0.770, (11/2)⁺ 3/2-[312] | 0.179, (3/2)⁻ 0.358, (5/2)⁻ 0.611, (7/2)⁻

 From existing spectroscopy of ⁷⁵Kr, can guess at some low-lying Nilsson bands: 5/2+[422] | 0.000, 5/2⁺ 0.187, (7/2)⁺ 0.377, (9/2)⁺ 0.770, (11/2)⁺ 3/2-[312] | 0.179, (3/2)⁻ 0.358, (5/2)⁻ 0.611, (7/2)⁻

- From existing spectroscopy of ⁷⁵Kr, can guess at some low-lying Nilsson bands: 5/2+[422] | 0.000, 5/2⁺ 0.187, (7/2)⁺ 0.377, (9/2)⁺ 0.770, (11/2)⁺ 3/2-[312] | 0.179, (3/2)⁻ 0.358, (5/2)⁻ 0.611, (7/2)⁻
- Use γ -gating to **isolate bands**, get **relative strength** for fingerprint ID

- From existing spectroscopy of ⁷⁵Kr, can guess at some low-lying Nilsson bands: 5/2+[422] | 0.000, 5/2⁺ 0.187, (7/2)⁺ 0.377, (9/2)⁺ 0.770, (11/2)⁺ 3/2-[312] | 0.179, (3/2)⁻ 0.358, (5/2)⁻ 0.611, (7/2)⁻
- Use γ -gating to **isolate bands**, get **relative strength** for fingerprint ID
- Fit isolated spectrum to get diff. cross sections? At cost of hefty cut in statistics...

- From existing spectroscopy of ⁷⁵Kr, can guess at some low-lying Nilsson bands: 5/2+[422] | 0.000, 5/2⁺ 0.187, (7/2)⁺ 0.377, (9/2)⁺ 0.770, (11/2)⁺ 3/2-[312] | 0.179, (3/2)⁻ 0.358, (5/2)⁻ 0.611, (7/2)⁻
- Use γ -gating to **isolate bands**, get **relative strength** for fingerprint ID
- Fit isolated spectrum to get diff. cross sections? At cost of hefty cut in statistics...
- But, peak of AGATA efficiency! 2π AGATA@LNL, ϵ (0.2 MeV) \approx 26% ?

Ream energy & intensity	
• Beam dev. request for 1e5 pps , response was confident \rightarrow working assumption	

Context	Method	The case for ⁷⁴ Kr	Technical details	Summary
00	000	00	●○○	O
Beam deConside	ev. request for 1e5 rations: stats, shap	Beam energy & intens pps , response was confi pe of DCS, punchthrough	ity dent \rightarrow working assum 1, and possibility of (d,t	nption :)

Context Method The case for ⁷⁴Kr Technical details Summary o

Beam energy & intensity

- Beam dev. request for **1e5 pps**, response was confident \rightarrow working assumption
- Considerations: stats, shape of DCS, punchthrough, and possibility of (d,t)

4 MeV/u	very low stats	no (d,t)	no p-thru	f/g differentiable
6 MeV/u	+9% on 4 MeV/u	no (d,t)	no p-thru	f/g differentiable
8 MeV/u	+31% on 6 MeV/u	(d,t) possible	no p-thru	maybe diff w/ high stats
10 MeV/u	+23% on 8 MeV/u	(d,t) possible	g.s. p-thru	f/g undifferentiable

Context Method The case for ⁷⁴Kr Technical details Summary O

Beam energy & intensity

- Beam dev. request for **1e5 pps**, response was confident \rightarrow working assumption
- Considerations: stats, shape of DCS, punchthrough, and possibility of (d,t)

4 MeV/u	very low stats	no (d,t)	no p-thru	f/g differentiable
6 MeV/u	+9% on 4 MeV/u	no (d,t)	no p-thru	f/g differentiable
8 MeV/u	+31% on 6 MeV/u	(d,t) possible	no p-thru	maybe diff w/ high stats
10 MeV/u	+23% on 8 MeV/u	(d,t) possible	g.s. p-thru	f/g undifferentiable

• Assuming **8 MeV/u** for rest of these calculations as middle-ground trade-off

Context Method The case for ⁷⁴Kr Technical details Summary O

Beam energy & intensity

- Beam dev. request for **1e5 pps**, response was confident \rightarrow working assumption
- Considerations: stats, shape of DCS, punchthrough, and possibility of (d,t)

4 MeV/u	very low stats	no (d,t)	no p-thru	f/g differentiable
6 MeV/u	+9% on 4 MeV/u	no (d,t)	no p-thru	f/g differentiable
8 MeV/u	+31% on 6 MeV/u	(d,t) possible	no p-thru	maybe diff w/ high stats
10 MeV/u	+23% on 8 MeV/u	(d,t) possible	g.s. p-thru	f/g undifferentiable

- Assuming 8 MeV/u for rest of these calculations as middle-ground trade-off
- Alternatively, run two energies (e.g. 10 MeV/u for stats, 4 MeV/u to differentiate)

	Method 000		Technical details ○○●	
• ¹⁹ O a	& ⁴⁷ K: high-stats, pea	Required UT's ks range from 1,000 to	13,000 proton counts per stat	e

(Context 00	Method 000	The case for ⁷⁴ Kr 00	Technical details	Summary O
			Required UT's)	
	• ¹⁹ O &	⁴⁷ K: high-stats, pe	aks range from 1,000 to	13,000 proton counts pe	er state
	• Aim: 1	,500 γ-gated cour	nts in low-energy g _{9/2} ro	otational band	
	• Distr	ributed over many	states, but distributed une	evenly, so expect 2-5 lar	ge states
	• γ eff	ficiency approx. ha	lved by 2.0 MeV, so high	n-E bands will have far	: less

Context 00	Method 000	The case for ⁷⁴ Kr 00	Technical details ○○●	Summary O
		Required UT's		
• 19	O & ⁴⁷ K: high-stats, peak	as range from 1,000 to	13,000 proton counts per	r state
• A	im: 1,500 γ-gated counts	s in low-energy g _{9/2} r	otational band	
•	Distributed over many sta γ efficiency approx. halv	ates, but distributed under ed by 2.0 MeV, so hig l	evenly, so expect 2-5 larg h-E bands will have far	ge states less
• G	iven significant resolution	requirements, assumin	ng 4 μ m CD ₂	

Co	ontext Method O 000	The case for ⁷⁴ Kr 00	Technical details ○○●	Summary O
			_	
1		Required UT's		
	• ¹⁹ O & ⁴⁷ K: high-stats, peaks ra	nge from 1,000 t	o 13,000 proton counts per stat	e
	• Aim: 1,500 γ-gated counts in]	low-energy g _{9/2}	rotational band	
	• Distributed over many states,	but distributed u	nevenly, so expect 2-5 large sta	ates
	• γ efficiency approx. halved b	y 2.0 MeV, so h i	gh-E bands will have far less	
	• Given significant resolution req	uirements, assun	ning 4 μ m CD ₂	
	• Over realistic angular coverage,	$\sigma(g_{9/2}) = 1.5 \mu$	$mb \rightarrow 410$ counts/day if $S = 1$	
		,		

C	Context Method 7 00 000	The case for ⁷⁴ Kr 00	Technical details ○○●	Summary O
	_			
		Required UT's		
	• ¹⁹ O & ⁴⁷ K: high-stats, peaks rang	ge from 1,000 to	13,000 proton counts per sta	ate
	• Aim: 1,500 γ-gated counts in lov	w-energy g _{9/2} ro	otational band	
	• Distributed over many states, but	ut distributed une	evenly, so expect 2-5 large s	tates
	• γ efficiency approx. halved by	2.0 MeV, so high	n-E bands will have far les	s
	• Given significant resolution require	rements, assumir	ng 4 μ m CD ₂	
	• Over realistic angular coverage, σ	$r(g_{9/2}) = 1.5 mk$	$b \rightarrow 410$ counts/day if $S = 1$	1
	• Observable $\sum S$ from literature us	sually 0.8 per bar	$nd \rightarrow 328$ counts/day/band	

Ci o	Context Method The case for ⁷⁴ Kr Technical	details Summary O
6	Required UT's	
	• ¹⁹ O & ⁴⁷ K: high-stats, peaks range from 1,000 to 13,000 proto	n counts per state
	• Aim: 1,500 γ -gated counts in low-energy $g_{9/2}$ rotational bar	nd
	• Distributed over many states, but distributed unevenly, so ex	pect 2-5 large states
	• γ efficiency approx. halved by 2.0 MeV, so high-E bands w	ill have far less
	• Given significant resolution requirements, assuming 4 μ m CD ₂	2
	• Over realistic angular coverage, $\sigma(g_{9/2}) = 1.5 \text{ mb} \rightarrow 410 \text{ cou}$	nts/day if $S = 1$
- 1		

- Observable $\sum S$ from literature usually 0.8 per band \rightarrow 328 counts/day/band
- AGATA $\epsilon(0.2 \text{ MeV}) = 26\% \rightarrow 85 \gamma$ -gated counts/day/band

Cont 00	text Method The case for ⁷⁴ Kr Technical details 000 00 00 00	Summary O
(Required UT's	
	• ¹⁹ O & ⁴⁷ K: high-stats, peaks range from 1,000 to 13,000 proton counts per stat	e
	 Aim: 1,500 γ-gated counts in low-energy g_{9/2} rotational band 	
	• Distributed over many states, but distributed unevenly, so expect 2-5 large sta	ates
	• γ efficiency approx. halved by 2.0 MeV, so high-E bands will have far less	
	• Given significant resolution requirements, assuming 4 μ m CD ₂	
	• Over realistic angular coverage, $\sigma(g_{9/2}) = 1.5 \text{ mb} \rightarrow 410 \text{ counts/day if } S = 1$	
	• Observable $\sum S$ from literature usually 0.8 per band \rightarrow 328 counts/day/band	
	• AGATA $\epsilon(0.2 \text{ MeV}) = 26\% \rightarrow 85 \gamma$ -gated counts/day/band	

• Therefore, to approach 1500 counts/band, require something like 17 days of beam

Context 00	Method 000	The case for ⁷⁴ Kr 00	Technical details ○○●	Summary O
		Required UT's		
• ¹⁹ O & ⁴⁷ K: ł	nigh-stats, peaks ra	inge from 1,000 to	13,000 proton counts per	state
 Aim: 1,500 γ 	v-gated counts in	low-energy g _{9/2} ro	tational band	
• Distributed	d over many states.	, but distributed une	evenly, so expect 2-5 large	e states
• γ efficienc	y approx. halved b	y 2.0 MeV, so high	1-E bands will have far l	ess
• Given signifie	cant resolution req	uirements, assumin	g 4 μ m CD ₂	
• Over realistic	c angular coverage	$\sigma(g_{9/2}) = 1.5 mk$	$ ho \rightarrow 410$ counts/day if S =	= 1
● Observable ∑	S from literature	usually 0.8 per bar	$d \rightarrow 328$ counts/day/band	d
• AGATA $\epsilon(0)$	2 MeV) = 26% -	$\rightarrow 85 \gamma$ -gated counts	/dav/band	

• Therefore, to approach 1500 counts/band, require something like 17 days of beam

To be refined, but rough estimation indicates at least 2 weeks is necessary

	Method 000		Summary
		Summary	
ſ			
l			

Method 000			Summary
Microscopic probe of collec	Summary	origins of shape coev	
Direct transfer samples Ψ v	ia relative energy and	I strength of Nilsson states	
F			

Method 000		Summary
	Summary	

- Microscopic probe of collective wavefunction \rightarrow origins of shape coex.
- Direct transfer samples Ψ via **relative energy and strength** of Nilsson states
- Historically, technique used for stable isotopes, not exploited for radioactive isotopes
- Recent work reanalysing existing data in this framework (see Macchiavelli and Kay)

Method 000		Summary

Summary

- Microscopic probe of collective wavefunction → origins of shape coex.
- Direct transfer samples Ψ via **relative energy and strength** of Nilsson states
- Historically, technique used for stable isotopes, not exploited for radioactive isotopes
- Recent work reanalysing existing data in this framework (see Macchiavelli and Kay)
- Currently exploring ideal "flagship" experiment in N=Z=40 region
 - Prolate-oblate shape coex., dirth of spectroscopic data, and beam availability
 - ⁷⁴Kr(d,p) is an interesting option, but would like community input
 - Open to suggestions and criticism!