Particle Identification with Geometric Deep Learning

Anna Ershova anna.ershova@llr.in2p3.fr

LLR, Ecole Polytechnique

28 November 2024

Data

Data

Data

Training examples: $\{(x_1, y_1), ..., (x_N, y_N)\}$ x_i is a **feature vector** of the i-th example and y_i its **label**

Data

Processing

Training examples: $\{(x_1, y_1), ..., (x_N, y_N)\}$ x_i is a **feature vector** of the i-th example and y_i its **label**

Data

Processing

Training examples: $\{(x_1, y_1), ..., (x_N, y_N)\}$ x_i is a **feature vector** of the i-th example and y_i its **label** Search a function $g: X \to Y$ prediction of Y based on X Loss: $\frac{1}{N} \sum l(\hat{y}_i, y_i) \to min$

Training examples: $\{(x_1, y_1), ..., (x_N, y_N)\}$ x_i is a **feature vector** of the i-th example and y_i its **label** Search a function $g: X \to Y$ prediction of Y based on X Loss: $\frac{1}{N} \sum l(y_i, \hat{y}_i) \to min$

Training examples: $\{(x_1, y_1), ..., (x_N, y_N)\}$ x_i is a **feature vector** of the i-th example and y_i its **label** Search a function $g: X \to Y$ prediction of Y based on XLoss: $\frac{1}{N} \sum l(y_i, \hat{y_i}) \to min$

- **Prediction**: $\hat{y}_i = g(x_i)$ for new data
- Evaluate model according to the chosen **metrics**

Graph Neural Network

• each node has a feature vector

each node has a feature vector each node aggregates information from its neighbors • the node message is computed based on its feature vector after aggregating all messages, the node updates its feature vector

• each node has a feature vector

- each node aggregates information from its neighbors
- the node message is computed based on its feature vector
- after aggregating all messages, the node updates its feature vector
- After L layers, the node feature vectors incorporate information from nodes that are L hops away in the graph

GNN vs. CNN

GNN vs. CNN

- object recognition
- medical imaging for tumor detection
- object detection for self-driving cars
- transforming images into Van Gogh-like paintings

Convolutional Neural Network (CNN) Convolution operation over graph-based structure

- predicting friendships or interactions on Facebook
- predicting molecular properties for drug discovery
- analyzing road networks for route optimization
- optimizing supply chain networks or logistics operations

dataset

G

learning process

propagación

Graph Neural Network (GNN)

P. Pham et. al., Artificial Intelligence Review

Applications of GNNs

GRAph-based Neutron Tagging is coordinated in the context of LLR/ILANCE group effort coordinator: Benjamin Quilain

aims of tagging neutrons from IBD interactions of DSNB electron antineutrinos in **Super-Kamiokande** and **Hyper-Kamiokande**: Antoine Beauchêne

- adaptation for atmospheric neutrinos in Hyper-Kamiokande: Christine Quach
- adaptation for atmospheric neutrinos in **Super-Kamiokande**: Christine Quach, Erwan le Blevec, and Mathieu Ferey
- low energy applications: neutron tagging in WCTE: Lorenzo Perisse
- adaptation for WCTE: Anna Ershova

Super-Kamiokande

Super-Kamiokande

- Fiducial mass: 22.5 kton
- ▶ 11 129 PMTs in the Inner Detector
 - Diameter: $\sim 50 \, \text{cm}$
 - Time resolution: ~ 3 ns
 - Photocathode coverage: $40\,\%$
- ▶ Since 2020 (SK phase VI): 0.02 % in mass of $Gd_2(SO_4)_3 \cdot 8H_2O$ (\leftrightarrow Gd) was added to the tank ⇒ Increase the neutron detection efficiency

slide of Antoine Beauchêne

Hyper-Kamiokande

• MSW effect in the Sun

INSTITUT

- Non-standard interactions in the Sun
 Supernovae neutrinos:
- Direct SNv: Constrains SN models
- Relic SNv: Constrains cosmic star formation history

	SK	НК
Site	Mozumi	Tochibora
Overburden	2700 m.w.e.	1700 m.w.e.
Number of ID PMTs	11129	20000
Photo-coverage	40%	20% (x2 efficiency)
Mass/Fiducial mass	50 kton / 22.5 kton	258 kton / 186 kton
Beam power	500 kW to 1 MW	1.3 MW

Main cavern/Detector

Proton decay Probe Grand Unified Theories through

p-decay (world best sensitivity)

21m

73m

Circular Tunnel

- Observe CP violation for lepton at 5 σ
- Precise measurement of δCP

Access Tunnel—

Approach Tunnel

 \bullet High sensitivity to ν mass ordering

Parameters to reconstruct

PMT output

- position X, Y, Z
- charge Q
- time t

Parameters to reconstruct

- flavor (PID)
- energy
- direction
- vertex

- Number of triggered PMTs vary from event to event
- Information in the event:
 - position X, Y, Z
 - charge Q
 - time t
- Based on this information, we intend to identify the particle

- Irregular Geometry of the Detector
 - PMTs form a non-uniform grid on a cylindrical surface: GNNs handle better irregular, non-Euclidean data structures
 - CNNs might have difficulties with handling 3D-data

Sparsity of the Signal

- only a small subset of PMTs is activated
- GNNs process sparse signals by handling information across nodes (PMTs), CNNs require dense data grids

Relational Data

 GNNS capture relationships between PMTs through graph edges and message-passing

Data normalization ensures that all features **contribute equally** to the model, preventing **bias** toward larger values and **improving performance**.

Building a graph

- One graph node is one PMT hit with features (X, Y, Z), Q, t
- Which nodes are close to each other?
 - based on position
 - based on charge and time
 - both
- How do we connect nodes?
 - too many \rightarrow too much memory used
 - too little \rightarrow we might loose information

These are the parameters to be optimized for our task

ResGatedGraphConv

 arXiv

<u>arXiv</u>

Skip connection technique:

- addresses vanishing/exploding gradient issue \rightarrow allows for deeper networks
- deeper networks can learn more complex features

Gated Recurrent Unit (GRU)

ResGatedGraphConv

<u>arXiv</u>

- **Reset gate:** how much of the previous state should be "forgotten" while computing the new state
- **Update gate:** controls the balance between the old information from the previous state and the new one from the new state
- **Applications:** sentiment analysis, machine translation, speech-to-text

ResGatedGraphConv

What does it mean for us:

The "gate" decides how much of the **residual** (input) information should be retained versus how much of the **newly computed** features should be added

GRANT binary classification model: pooling

Classic pooling with 2x2 filter

torch_geometric pooling for i-th graph: global add pool

global mean pool

If we have num_graphs graphs:

 $\begin{array}{c} \textbf{Mean and sum pooling} \\ (num_nodes, num_features) \xrightarrow{pool} (num_graphs, num_features) \end{array}$

GRANT binary classification model: visualization

Mean and sum pooling

Other hyperparameters

Number of convolutional and hidden layers, number of neurons, the way we build a graph...

What else could we do?

dataset

dataset

training

We can play with number of epochs and the stopping condition

dataset

dataset

Batch: number of samples that will be simultaniously propagated through the network; based on these samples the weights of the model are updated. Update is based on the **gradient descent**

dataset

Batch: number of samples that will be simultaniously propagated through the network; based on these samples the weights of the model are updated. Update is based on the **gradient descent**

- + requires less memory
- +- trains slower but can converge faster
 - gradient descent may be less accurate
 - ! for larger batches the significant degradation of the model is observed (ability to generalize)

dataset

Batch: number of samples that will be simultaniously propagated through the network; based on these samples the weights of the model are updated. Update is based on the **gradient descent**

+ requires less memory

- +- trains slower but can converge faster
 - gradient descent may be less accurate
 - ! for larger batches the significant degradation of the model is observed (ability to generalize)

L(x, w) — loss function, x — training set, w — weights to be optimized **Goal:** to minimize L(x, w). Gradient descent update:

$$w_{t+1} = w_t - \lambda \nabla_w L(x, w)$$

 $w_t :$ represents the current weights at iteration ${\bf t}$

 $abla_w L(x,w)$: is the gradient of the loss function with respect to the weights λ : learning rate, is discussed on the next slide

dataset

iously propagated through the network; based on these samples the weights of the model are updated. Update is based on the gradient descent

- + requires less memory
- +- trains slower but *can* converge faster
 - gradient descent may be less accurate
 - ! for larger batches the significant degradation of the model is observed (ability to generalize)

Learning rate determines how much the neural network weights change within the context of optimization while minimizing the loss function. It determines how much the **new information** will influence the model. It varies within [0, 1].

Other hyperparameters: dropout

Other hyperparameters: dropout

 use all features in training
 use all features for graph creation
 k nearest neighbors
 number of convolutional layers
 number of hidden layers
 number of neurons
• batch size
learning rate
• dropout

yes/no yes/no [1, ..., 70] [1, 2, 3, 4, 5, 6, 7] [1, 2, 3, 4, 5, 6, 7] [2, 4, 8, 16, 32, 64, 128, 256, 512] [8, 16, 32, 64, 128, 256, 512, 1024] [0.00001, 0.0001, 0.001, 0.01, 0.1][0.1, 0.2, 0.3, 0.4]

We need to search for the best set of parameters!

Hyperparameters search

Optimal parameters
Local optimal parameters

Problem:

- optimise f(x) (find min or max)
- f(x) can be whatever
- f'(x) is unknown
- evaluating f(x) is expensive

Hyperparameters search: Bayesian optimization

Problem:

- optimise f(x) (find min or max)
- f(x) can be whatever

INSTITUT POLYTECHNIQUE

- f'(x) is unknown
- evaluating f(x) is expensive

Solution:

- evaluate f(x)
- train gaussian process regressor

Hyperparameters search: Bayesian optimization

Problem:

- optimise f(x) (find min or max)
- f(x) can be whatever
- f'(x) is unknown
- evaluating f(x) is expensive

Solution:

- evaluate f(x)
- train gaussian process regressor
- calculate acquisition function
- define which evaluation to do next

Confusion matrix

Binary classification: separate "signal" from "noise"

There are many metrics we can use to evaluate our model:

• accuracy=
$$\frac{\text{correct predictions}}{\text{total predctions}} = \frac{TP+TN}{TP+TN+FP+FN}$$

• **precision=**
$$\frac{\text{correctly predicted positives}}{\text{total predicted positives}} = \frac{TP}{TP+FP}$$

• recall=
$$\frac{\text{correctly predicted actual positives}}{\text{all actual}} = \frac{TP}{TP+FN}$$

In our case we will use accuracy

Receiver Operating Characteristic curve (ROC curve)

- **True Positive Rate**: $TPR = \frac{TP}{TP+FN}$ (signal efficiency)
- False Positive Rate: $FPR = \frac{FP}{FP+TN}$ (accidental background)

Performance evaluation of binary classification

INSTITUT

- the **bigger** area under curve (AUC) the **better**
- diagonal line from (0, 0) to (1, 1) corresponds to random choice
- allows to calculate model performance at various levels of **background acceptance**

Simulation:

	WCTE	Hyper-Kamiokande
Energy	200-1000 MeV	100-1000 MeV
Direction	Isotropic	Isotropic
Decition	Center of	Isotropic inside the
Position	WCTE	detector

Particle classification:

- electron vs muon
- muon⁻ vs pion⁻
- electron vs gamma

Ideal pipeline:

Goals: proof of technology and physics for Hyper-Kamiokande: measure important physical processes for water Cherenkov detectors: charged pion hadronic scattering, secondary neutron production, and Cherenkov light production from secondary particles. **Unique dataset for testing ML algorithms on the well-controlled data.**

- Now: WCTE beam data-taking
- 2025: gadolinium loading

Parameters search

Bayesian optimisation-based parameter search

Small dataset, large phase-space

Bayesian optimisation-based parameter search

Big dataset, small phase-space

Parameters search

Bayesian optimisation-based parameter search

Small dataset, large phase-space

Bayesian optimisation-based parameter search

Big dataset, small phase-space

Best model

Hyperparameter	Value
use all features	true
use all features for graphs	false
k nearest neighbors	18
convolutional layers	2
hidden layers	3
neurons	32
batch size	512
learning rate	0.001
dropout	0.15

Number of parameters: 16242 Training time: 20.5 hours

Performance on the test set

Overall accuracy: 69%

Performance on the test set

Hyperparameter	Value
use all features	true
use all features for graphs	true
k nearest neighbors	23
convolutional layers	3
hidden layers	5
neurons	32
batch size	512
learning rate	0.001
dropout	0.2

Number of parameters: 34532 Training time: 6 hours, small dataset

Performance on the test set

Overall accuracy: 99.5%

Christine's results: HK

INSTITUT POLYTECHNIQUE

86

Best model

Hyperparameter	Value
use all features	false
use all features for graphs	true
k nearest neighbors	31
convolutional layers	8
hidden layers	2
neurons	8
batch size	16
learning rate	0.001
dropout	0.1

Number of parameters: 12834 Training time: 3 hours, small dataset

Performance on the test set

Overall accuracy: 81%

POLYTECHNIQUE

Performance on the test set

Overall accuracy: 81%

Separation strength of the two particle types, there is a disproportion towards misidentifying gammas

Separation strength of the two particle types, there is a disproportion towards misidentifying gammas

Christine's results: HK

INSTITUT POLYTECHNIQUE

Energy reconstruction

Christine's results: HK

Anna Ershova • LLR AI forum • 28 November 2024

INSTITUT

Now you know how graph neural nets work!

PID	WCTE	НК
muon vs pion	69% accuray, more work needed	-
electron vs muon	99.9% efficiency at 5% bkg	99.9% efficiency at 5% bkg
electron vs gamma	86% efficiency at 25% bkg	58% efficiency at 50% bkg, in progress
electron vs pion	-	99% efficiency at 25% bkg

Prospects:

- Continuing the effort for multidimensional reconstruction
 - Optimizing for 3D vertex reconstruction,
 - $\circ~$ Simultaneous vertex and direction reconstruction
- Enhancing e/gamma and muon/pion separation
- μ^+/μ^- and e/ π^0 separation for WCTE (to be developed)
- Ring counting (to be developed)
- Application to SK data

BACK UP