Nuclear DFT magnetic dipole moments in odd near doubly-magic nuclei

mercredi 14 mai 2025 09:00 (30 minutes)

The study of nuclear electromagnetic moments plays a crucial role in understanding the structure of atomic nuclei [1]. While the electric quadrupole moments in atomic nuclei indicate nuclear deformation and collectivity, the magnetic dipole moments are sensitive to the single-particle properties of valence nucleons. In our nuclear DFT methodology, the intrinsic electric quadrupole and magnetic dipole moments in odd nuclei are generated by the self-consistent shape and spin core polarization effects induced by the unpaired nucleon. The spectroscopic moments of angular-momentum-projected wave function are determined and compared with available experimental data without introducing effective charges and g-factors. We have applied our methodology to calculate the spectroscopic moments in heavy deformed open-shell odd nuclei in several regions of the nuclear chart [2, 3, 4].

In contrast to the predicted quadrupole moments that generally reproduce the data very well, the calculated magnetic dipole moments may deviate from the data sometimes by a significant amount. To improve the agreement with the data, following Refs. [5, 6], we extended the one-body magnetic dipole moment operator used in the nuclear DFT by two-body terms derived from the meson-exchange currents. We have incorporated these terms into our recent calculations for the odd-nuclei around eight doubly magic nuclei (16 O, 40 Ca, 48 Ca, 56 Ni, 78 Ni, 100 Sn, 132 Sn, and 208 Pb). This talk will focus on the spectroscopic magnetic dipole moments in the vicinity of doubly-magic 78 Ni, 100 Sn, and 132 Sn nuclei, which are the main interests of the gSPEC collaboration [7].

- [1] G. Neyens, Rep. Prog. Phys. 66, 633 (2023)
- [2] P. L. Sassarini et al., J. Phys. G: Nucl. Part. Phys. 49, 11LT01 (2022)
- [3] J. Bonnard et. al., Phys. Lett. B 843, 138014 (2023)
- [4] H. Wibowo et al., to be published
- [5] R. Seutin et al., Phys. Rev. C 108, 054005 (2023)
- [6] T. Miyagi et al., Phys. Rev. Lett. 132, 232503 (2024)
- [7] R. Lozeva, A. Stuchbery, J. Gerl et al., Hyperfine Interact 240, 55 (2019).

Author: WIBOWO, Herlik (Department of Physics, University of York)

Co-auteurs: Dr HAN, Rui (Department of Physics, University of Jyväskylä, Finland); Mlle CAMILLE BACKES, Betania (School of Physics, Engineering and Technology, University of York, UK); Prof. DOBACZEWSKI, Jacek (School of Physics, Engineering and Technology, University of York, UK); Prof. KORTELAINEN, Markus (Department of Physics, University of Jyväskylä, Finland)

Orateur: WIBOWO, Herlik (Department of Physics, University of York)

Classification de Session: Session 7