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• Solar Flare: A sudden burst of energy and 
radiation from the Sun’s surface, primarily in the 
form of X-rays and extreme ultraviolet light. Flares 
happen near sunspots and affect Earth almost 
instantly, impacting radio and satellite 
communications.

Solar activity
• Coronal Mass Ejection (CME): A massive cloud 

of plasma and magnetic field released from the 
Sun’s corona. CMEs travel slower than flares, 
taking 1-3 days to reach Earth, and can cause 
geomagnetic storms that disrupt power grids 
and GPS.
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1. Solar activity (solar flares and coronal mass ejections)

3. Geomagnetic storms

2. Charged particles carried and accelerated by the solar wind 

4. Electric currents in the magnetosphere and ionosphere produce a 
changing magnetic field across the Earth’s surface

5. Electromagnetic field interacts with the Earth’s 
conductivity, resulting in voltage differences, resulting in 
Geomagnetically Induced Currents (GICs) 

Solar weather in a nutshell 
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Solar weather in a nutshell 

6. Impacts
• Aurora borealis 😍
• Radiation Exposure (Astronauts and airline crew members) 😕
• Satellite communication disruptions (incl. GPS nav.) 🛰😤
• Power grid disruptions 🤦💡
• Pipeline corrosion 🤦
• Health effects 🤦🫀
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Solar weather in a nutshell 

Space propagation Space propagation

NASA’s ACE @ L1  
(15-60 min in advance)

Geomagnetic observatories on ground
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Solar cycles
• What is a Solar Cycle? 

• An approximately 11-year cycle of 
solar activity, marked by fluctuations in 
sunspot numbers, solar flares, and 
coronal mass ejections (CMEs)


• Phases of the Solar Cycle: 
1. Solar Minimum: Low sunspot 

activity, fewer solar storms, and 
minimal geomagnetic impact on 
Earth.


2. Solar Maximum: High sunspot 
numbers, increased solar flares and 
CMEs, with stronger geomagnetic 
storms impacting Earth.


•Current Cycle: 
•We are currently in Solar Cycle 25, 
expected to peak around 2025. During solar maximum, increased solar storms can 

disrupt satellites, power grids, and communication 
systems.
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• G-scale (G1-G5) measures geomagnetic storm severity, from minor (G1) to extreme (G5), based 
on Earth’s magnetic disruption

• G1 (Minor)

• Small power grid fluctuations

• Minor satellite communication issues

• Auroras at high latitudes

• G2 (Moderate)

• Limited impact on power systems

• Satellite orientation adjustments may be 

needed

• Auroras visible at slightly lower latitudes

• G3 (Strong)

• Voltage irregularities in power grids

• Intermittent GPS and satellite disruptions

• Auroras visible in mid-latitudes

Potential Impacts of Solar Storms

• G4 (Severe)

• Widespread voltage control 

issues; potential power 
outages


• Significant satellite, GPS, and 
communication disturbances


• Auroras visible in lower 
latitudes

• G5 (Extreme)

• Extensive power grid failure 

risks

• Severe satellite and GPS 

disruptions

• Intense auroras visible as far 

as tropical latitudes
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Major Solar Storms and Their Impact: A Historical Overview

• Carrington Event (1859): Originated from a massive coronal mass 
ejection (CME). G5 storm, lasting about 8 days. Caused telegraph 
failures and auroras in the Caribbean. 

• Halloween Storms (2003): Originated from multiple X-class flares. 
G3 to G5 range, lasting from October 28 to November 4, 2003. 
Disrupted satellites, GPS, and power grids.


• Solar Flare Scale (X, M, C) measures flare intensity, from C-class 
(weakest) to X-class (most intense). 

• Solar Storm of 1921: Caused by a CME. G5 storm, lasting several 
days. Damaged telegraphs, set fires, and affected global 
communications. 

• March 1989 Storm: Originated from a CME. G4 storm, lasting 1-2 
days. Caused a 9-hour power outage in Quebec and satellite 
disruptions.

The Solar and Heliospheric Observatory (SOHO) spacecraft captured this image of a 
solar flare as it erupted from the sun early on Tuesday, October 28, 2003. The flare 
was recorded as a massive X45-class solar storm
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May 2024 Mother’s Day Superstorm
• Classification: Driven by powerful coronal mass ejections (CMEs).


• Cause: In early May, two large sunspots, AR3663 and AR3664, 
appeared on the Sun’s visible surface (AR = Active Region).

• Satellites: Increased atmospheric drag on 
low Earth orbit (LEO) satellites, causing 
altitude drops and requiring emergency 
maneuvers, which raised collision risks. 

• Ground Effects: Potential disruptions in 
GPS, radio, and power grids; vivid auroras 
observed at unusually low latitudes across 
Europe and North America.

• AR3664 was 16 times the size of Earth and responsible 
for the geomagnetic storms on May 10-11.
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How we can predict when solar storms 
will occur?
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Predicting Solar Storms Using Machine Learning
Overview: 

•Machine Learning Forecasting leverages 
large datasets from solar observations 
(sunspots, flares, solar wind) to predict 
solar storm activity.


How It Works: 
•Data Analysis: Machine learning models are 
trained on years of solar storm data to recognize 
early indicators of storms.

Data from NASA’s ACE spacecraft at 
L1 contains 42 of the most intense 
geomagnetic storms, distributed in 
two solar cycles (1998-2018)  

SYM-H index is a key measure of geomagnetic storm intensity 11



Deep-learning Model
• LSTM (Long Short-Term Memory) is a type of recurrent neural 

network (RNN) designed to handle sequential data. It excels in tasks 
like time series prediction and natural language processing by 
maintaining long-term dependencies. —> We use this one! 


• CNN (Convolutional Neural Network). Unlike LSTMs, CNNs excel 
in extracting local features but are not designed to handle temporal 
sequences. 

• Long Short-Term Memory (LSTM) Neural Network (in Keras) 

Uncertainty Quantification: 

• Block Bootstrapping: Preserved the temporal 
structure of the data.


• Concrete Dropout: Enhanced dropout 
probabilities for improved regularization and 
uncertainty management.

• Optimization: Optuna, a Bayesian-based algorithm optimized 
hyperparameters, including the number of layers, neurons, and 
learning rate, ensuring optimal LSTM performance.
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LSTM Results

• Comparison of SYM-H predictions with public results: 
• RMSE lower value the better, R squared the higher the 

better 

• Forecasting SYM-H index 1-hour ahead (full storm range)

Uncertainty bands derived from the 
block-bootstrapping method using 200 
runs
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Other source of uncertainties could be the intrinsic variation of the SYM-H index, considered as independ-
ent from the uncertainties of the model (so far, uncertainties on the input features have not been considered). 
Recalling that we have retrieved an estimation of this value from the evaluation of the residuals in the out of 
peak interval, we can recalculate PICP after adding this value as a source of uncertainty. The bands in Figure 12 
correspond to the PICP calculated after including a 4.22 ± 1.43 nT uncertainty on the predicted SYM-H data. For 
the full test sub-data set and full storm range, the PICP band is compatible with the perfect coverage, while for 
storms T11 and T12, or when only the peak interval are considered, there is still a remaining underestimation.

As already mentioned, time shift is a common behavior of ML models 
handling time-series data. This peculiarity is of course another relevant 
source of uncertainty. To quantify this effect on PICP at 95% CL, we 
shifted the observed time-series with respect to the predicted values (1-hr 
look-forward) by different time values between 0 and 2 hr and calculate the 
hypothetical new PICP for each time shift. We have observed an improve-
ment in the coverage metrics when the time shift is in the interval between 0 
and 1 hr. This shows that the inherent time lag of the model may account for 
the underestimation of the uncertainty observed in Figure 12 because, after 
taking into consideration both sources of uncertainty, an ideal PICP coverage 
is obtained for various storms in the test sub-data set. A correction of this 
uncertainty is outside the scope of this work, given that a larger data set 
(more storms for training), more input features and maybe a more appropriate 
architecture should significantly mitigate this behavior. The recent work by 
Collado-Villaverde et al. (2023) is going in that direction including Attention 
to the deep-learning model and also other features with promising results in 
their of global metrics.

6. Conclusions
In this paper we present an LSTM model with associated uncertainties to 
predict the evolution of a geomagnetic index with a good level of reliability 
during a set of geomagnetic storms. We introduce a powerful method to opti-
mize the hyper-parameters of the forecasting model. We also propose two 
statistically robust procedures, block bootstrapping and concrete dropout, to 
estimate the uncertainties of these predictions. In particular, we forecast the 
SYM-H index, a quantity whose variation during a storm is a good summary 
of its strength. As input features, we used IMF data (B 2,  and Bz) from 
the ACE spacecraft located at the L1 Lagrange point together with SYM-H 
values.

Figure 11. Mean root mean squared error with 95% CL uncertainties (orangish band), estimated by using the block-bootstrap method, as a function of the ahead time 
prediction for storm T11 (left), T12 (center), and full data set (right).

Residuals (data-model) (nT)

Storm

Peak interval Out of peak interval Full storm interval

Mean Std. dev. Mean Std. dev. Mean Std. dev.

T1 0.83 8.47 0.60 4.76 0.66 6.03
T2 0.67 11.87 0.46 3.32 0.59 9.43
T3 0.43 5.39 0.08 3.19 0.19 7.20
T4 6.48 14.80 −0.35 3.19 0.89 7.42
T5 3.52 6.41 0.77 3.79 1.51 4.79
T6 −3.70 12.54 −0.11 4.65 −1.13 7.92
T7 0.18 11.95 −0.15 3.98 −0.06 7.12
T8 −1.89 38.03 0.58 8.33 −0.06 20.66
T9 0.42 11.85 0.53 6.19 0.48 9.39
T10 1.17 7.59 0.34 3.53 0.92 6.66
T11 2.08 10.27 0.48 5.53 1.34 8.45
T12 −0.19 22.58 −0.45 3.63 −0.32 16.19
T13 0.03 5.66 −0.18 3.31 −0.14 3.92
T14 1.37 7.68 −0.10 3.57 0.23 4.86
T15 0.18 7.25 −0.04 2.95 0.02 4.68
T16 0.50 18.02 0.47 5.09 0.47 8.71
T17 0.59 11.09 −0.59 3.08 −0.38 5.51
Mean 0.75 12.44 0.14 4.22 0.31 7.89
Std. dev. 2.12 8.00 0.42 1.43 0.66 4.40

Table 7 
Residuals for SYM-H Calculated as the Difference Between the Test 
Data (“Data”) and the Mean of the 200 Block-Bootstrapping Instances 
(“Model”), for the Peak Region, Out of the Peak Region and for the Full 
Storm
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Forecasting Full Storm 
Forecasting SYM-H index 1-hour ahead (full storm)
• Orange bands represent the 95% CL of the predicted value by our model 

Uncertainty bands estimated with 200 runs
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Forecasting Peak Range
Forecasting SYM-H index 1-hour ahead (storm-peak range only)
• Orange bands represent the 95% CL of the predicted value by our model 

Uncertainty bands estimated with 200 runs
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Conclusion and Goals

• Starting to build a simple prediction model
• Using past values of IMF data (B2, By2, Bz) at L1 point by the ACE spacecraft 
• Predict future values of  SYM-H multiple-hour ahead
• Robust model based on the state-of-the-art LSTM architecture
• Establish the necessity of estimating model uncertainties to have a reliable model

• Predicting solar storms is vital to safeguard critical infrastructure, such as satellites, power 
grids, and communication systems, from potential disruptions caused by solar flares and 
coronal mass ejections

• Ultimate goal
• Develop a predictive model to have a real-time early warning system to warn about the 

impact of future violent solar storms on Spanish critical infrastructures
• Real-time vulnerability map of the Spanish power network to the GIC hazards from our 

resistivity models
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