

Recherche des neutrinos cosmiques à haute énergie émis par les AGNs avec le télescope ANTARES

Garabed HALLADJIAN Dirigée par Paschal COYLE et Vincent BERTIN 1^{er} année de thèse, CPPM 23 Juin 2008

Plan de présentation

- Introduction
 - Astronomie neutrino
 - Description du détecteur ANTARES
- Noyau actif de galaxie (AGN)
 - Description
 - Estimation de flux des neutrinos
- Système de positionnement acoustique
 - Description
 - Vitesse du son dans la zone du détecteur
 - Résolution angulaire

Plan de présentation

- Introduction
 - Astronomie neutrino
 - Description du détecteur ANTARES
- Noyau actif de galaxie (AGN)
 - Description
 - Estimation de flux des neutrinos
- Système de positionnement acoustique
 - Description
 - Vitesse du son dans la zone du détecteur
 - Résolution angulaire

Avantages du neutrino:

• Il est stable (Pas de désintégration pendant son parcours).

Avantages du neutrino:

- Il est stable (Pas de désintégration pendant son parcours).
- Il est électriquement neutre (Pas de déviation par les champs magnétiques, localisation de la direction de sa source).

Avantages du neutrino:

- Il est stable (Pas de désintégration pendant son parcours).
- Il est électriquement neutre (Pas de déviation par les champs magnétiques, localisation de la direction de sa source).
- Il possède une très faible section efficace d'interaction et peut ainsi s'extirper des zones denses de l'Univers.

Avantages du neutrino:

- Il est stable (Pas de désintégration pendant son parcours).
- Il est électriquement neutre (Pas de déviation par les champs magnétiques, localisation de la direction de sa source).
- Il possède une très faible section efficace d'interaction et peut ainsi s'extirper des zones denses de l'Univers.

• Il n'interagit que par interaction faible et transporte ainsi des informations sur les phénomènes nucléaires des sources, contrairement au photon qui est issu de processus électromagnétiques.

Principe de détection

Principe de détection

23 Juin 2008

G. Halladjian

Événement (12 lignes)

23 Juin 2008

G. Halladjian

Bruit de fond

Bruit de fond

Plan de présentation

- Introduction
 - Astronomie neutrino
 - Description du détecteur ANTARES
- Noyau actif de galaxie (AGN)
 - Description
 - Estimation de flux des neutrinos
- Système de positionnement acoustique
 - Description
 - Vitesse du son dans la zone du détecteur
 - Résolution angulaire

Noyau actif de galaxie (AGN)

- L'AGN est une région compacte située au centre d'une galaxie qui est beaucoup plus lumineuse que la normale dans une partie ou dans l'ensemble du spectre électromagnétique.
- On pense que les radiations de l'AGN sont le résultat de l'accrétion autour du trou noir super massif situé au centre de la galaxie.
- Les AGN sont les sources de radiations électromagnétiques les plus lumineuses de l'Univers.

Noyau actif de galaxie (AGN)

- L'AGN est une région compacte située au centre d'une galaxie qui est beaucoup plus lumineuse que la normale dans une partie ou dans l'ensemble du spectre électromagnétique.
- On pense que les radiations de l'AGN sont le résultat de l'accrétion autour du trou noir super massif situé au centre de la galaxie.
- Les AGN sont les sources de radiations électromagnétiques les plus lumineuses de l'Univers.

AGN

Espace intergalactique

Terre

1. Emission de rayon γ et ν par interaction p-p $\rightarrow \pi^0, \pi^+, \pi^-$

1. Emission de rayon γ et ν par interaction p-p $\rightarrow \pi^0, \pi^+, \pi^-$ 2. Phénomène d'oscillation de ν .

- 1. Emission de rayon γ et ν par interaction p-p $\rightarrow \pi^0, \pi^+, \pi^-$
- 2. Phénomène d'oscillation de v
- 3. Absorption du rayon γ en traversant l'espace

- 1. Emission de rayon γ et ν par interaction p-p $\rightarrow \pi^0, \pi^+, \pi^-$
- 2. Phénomène d'oscillation de v
- 3. Absorption du rayon γ en traversant l'espace

- 1. Emission de rayon γ et ν par interaction p-p $\rightarrow \pi^0, \pi^+, \pi^-$
- 2. Phénomène d'oscillation de ν
- 3. Absorption du rayon γ en traversant l'espace

- 1. Emission de rayon γ et ν par interaction p-p $\rightarrow \pi^0, \pi^+, \pi^-$
- 2. Phénomène d'oscillation de ν
- 3. Absorption du rayon γ en traversant l'espace

- 1. Emission de rayon γ et ν par interaction p-p $\rightarrow \pi^0, \pi^+, \pi^-$
- 2. Phénomène d'oscillation de ν
- 3. Absorption du rayon γ en traversant l'espace

Fond de lumière diffuse extragalactique (EBL)

- EBL est la lumière émise par tous les objets de l'univers durant son histoire.
- Il forme un océan de photons qui remplit l'espace intergalactique.

 Photons émis par les corps célestes.

- Photons émis par les corps célestes.
- 2. Réémission thermique par la poussière cosmique.

- Photons émis par les corps célestes.
- 2. Réémission thermique par la poussière cosmique.
- 3. CMB

Epaisseur optique τ

L'épaisseur optique d'un milieu mesure le degré de sa transparence. Elle est définie par la fraction de rayonnement diffusée ou absorbée par les composants du milieu traversé. Si I_0 est l'intensité du rayonnement émise par une source traversant un milieu et I est l'intensité de ce rayonnement à une profondeur donnée, l'épaisseur optique τ mesure la partie de l'énergie perdue par absorption et diffusion selon la formule :

$$I = I_0 e^{-\tau}$$

Optical depth τ

$$\tau(E,z) = \int_{0}^{z} dz' \int_{-1}^{+1} d\mu \int_{\varepsilon'_{th}}^{\infty} d\varepsilon' \left[\frac{dl}{dz'} \times \frac{1-\mu}{2} \times n_{\varepsilon}(\varepsilon',z') \times \sigma_{\gamma\gamma}(E'_{\gamma},\varepsilon',\mu) \right]$$
$$\frac{dl}{dz} = \frac{R_{H}}{(1+z)[(1+z)^{2}(\Omega_{m}z+1)+z(2+z)[(1+z)^{2}\Omega_{r}-\Omega_{\Lambda}]]^{1/2}}$$
$$\sigma(E,\varepsilon,\mu) = \frac{3\sigma_{T}}{16} (1-\beta^{2}) \left[2\beta(\beta^{2}-2) + (3-\beta^{4})\ln\left(\frac{1+\beta}{1-\beta}\right) \right]$$
$$\beta = \sqrt{1-\frac{\varepsilon_{th}}{\varepsilon}} \qquad \varepsilon_{th}(E,\mu) = \frac{2m_{\varepsilon}^{2}}{E(1-\mu)} \qquad \varepsilon'_{th} = \varepsilon_{th}(E',\mu)$$

Simultaneous constraints on the spectrum of the extragalactic background light and the intrinsic TeV spectra of Mrk 421, Mrk 501, and H1426+428 Eli Dwek & Frank Krennrich

Centre de Physique des Particules de Marseille

Hypothèses: l'émission des rayons γ (E ~ 1 TeV) est dominée par la désintégration de π^0 produit par l'interaction **p-p**.

Potential Neutrino Signals from Galactic γ -Ray Sources (Aharonian & al.)

Bruit du fond

Première approximation

Taux neutrino atmosphérique = 3000 neutrino/hémisphère/an

- $\Omega = 0.6^{\circ}$ 0.041 v atm / an
- $\Omega = 1.0^{\circ}$ 0.114 v atm / an
- $\Omega = 2.0^{\circ}$ 0.457 v atm / an

	/
Centre de Physique des Particules de Marseille	
CPRM	

Γ_{Earth}	= - 2.76
Γ_{max}	= - 0.86
Γ_{min}	= - 1.81

Z	= 0.186
Dec	= -23°29'31''
Vis	= 0.632017

	> 1TeV	> 10TeV
ν (EBL upper)	293	290
u (EBL lower)	0.145	0.13

1ES1101-232

Centre de Physique des Particules de Marseille	
CPPM	

Γ_{Earth}	= - 2.82
Γ_{max}	= - 0.87
Γ_{min}	= - 1.85

Z	= 0.188
Dec	= -11°59'27''
Vis	= 0.563089

	> 1TeV	> 10TeV
u (EBL upper)	217	216
u (EBL lower)	0.12	0.087

1ES0347-121

Conclusion

Avec les hypothèses suivantes :

- 100% modèle hadronique
- p-p interaction (paramétrisation d'Aharonian)
- Aucune absorption dans les sources

LA DETECTION DU v COSMIQUE EMIS PAR LES AGNS EST POSSIBLE AVEC ANTARES

Plan de présentation

- Introduction
 - Astronomie neutrino
 - Description du détecteur ANTARES
- Noyau actif de galaxie (AGN)
 - Description
 - Estimation de flux des neutrinos
- Système de positionnement acoustique
 - Description
 - Vitesse du son dans la zone du détecteur
 - Résolution angulaire

Plan de présentation

- Introduction
 - Astronomie neutrino
 - Description du détecteur ANTARES
- Noyau actif de galaxie (AGN)
 - Description
 - Estimation de flux des neutrinos
- Système de positionnement acoustique
 - Description
 - Vitesse du son dans la zone du détecteur
 - Résolution angulaire

Système de positionnement acoustique

- Lignes non fixes.
- Nécessité d'un système de positionnement acoustique pour avoir une bonne précision sur les positions des différents points du détecteur.
- En connaissant le temps d'émission-réception et la vitesse des ondes acoustiques, des distances seront calculées.

 $d = v \times t$

Vitesse du son

23 Juin 2008

G. Halladjian

Plan de présentation

- Introduction
 - Astronomie neutrino
 - Description du détecteur ANTARES
- Noyau actif de galaxie (AGN)
 - Description
 - Estimation de flux des neutrinos
- Système de positionnement acoustique
 - Description
 - Vitesse du son dans la zone du détecteur
 - Résolution angulaire

Incertitude sur la positions des pieds des lignes

23 Juin 2008

G. Halladjian

Centre de Physique des Particules de Marseille

CPP

Incertitude sur la positions des pieds des lignes

• La position des pieds des lignes sont mesurées depuis le bateau.

de Physique des Particule de Marseille

CPE

Incertitude sur la positions des pieds des lignes

- La position des pieds des lignes sont mesurées depuis le bateau.
- La position du bateau est mesurée par le satellite.

de Physique des Particule de Marseille

G. Halladjian

La position absolue des pieds des lignes

La distance entre les pieds des lignes (distances acoustiques) diminue l'incertitude sur la positions des pieds des lignes.

Avant triangulation

Centre de Physique des Particules de Marseille

CPP

1.74

Translation

Simulation Monte-Carlo

Génération :

Simulation Monte-Carlo

Génération :

Simulation Monte-Carlo

Génération : 1, 2, ... 5000 détecteurs

Avant triangulation

23 Juin 2008

G. Halladjian

Après triangulation

23 Juin 2008

G. Halladjian

23 Juin 2008

Distances

23 Juin 2008

G. Halladjian

