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Motivation: SKA’s radio interferometer

Tob́ıas I. Liaudat 1



Radio interferometric imaging

Linear observational model

y = Φx+ n

y ∈ CM : Observed Fourier coefficients

n ∈ CM : Observational noise (assumed White and Gaussian)

x ∈ RN : Sky intensity image

Φ ∈ CM×N : Linear measurement operator

− In its simplest case: FFT and Fourier mask

Due to n and Φ the inverse problem is ill-posed

Goal: Estimate x̂ from y
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Uncertainty quantification: more than a point estimate

Image reconstruction: x̂
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Is this blob physical?

→ Is it a reconstruction artefact?

→ Is it backed by the data?

→ Can we base a scientific decision
on this image?

Several reasons motiaves us to develop uncertainty quantification
(UQ) techniques for the reconstruction methods,

• Usual UQ techniques from the Bayesian framework rely on
interrogating the posterior exploiting Bayes’ theorem:

posterior︷ ︸︸ ︷
p(x | y ,M) ∝

likelihood︷ ︸︸ ︷
p(y | x ,M)

prior︷ ︸︸ ︷
p(x | M)

For example, Cai et al. (2018a) applies this for radio imaging using a
ℓ1 regularised wavelet-based prior.

Sample from the posterior which is non-smooth to obtain
{x(j)}Kj=1, x

(j) ∼ p(x|y)

→ Proximal MCMC algorithm (Pereyra, 2016) following
Langevin dynamics

Is the problem solved?
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The problem is not solved

Based on: Scalable Bayesian uncertainty quantification with data-driven priors for radio
interferometric imaging (Liaudat, et al., 2024 (arXiv:2312.00125))

Difficulties in the high-dimensional setting:

1. Even if we know the likelihood, applying Φ is computationally expensive

2. Handcrafted priors like wavelets are not expressive enough

3. Sampling-based techniques are prohibitively expensive in this setting

How can we obtain information from the high-dimensional posterior p(x|y) without sampling
from it?

If we restrict to log-concave posteriors something beautiful happens!
→ A concentration phenomenom (Pereyra, 2017)

log-concave posterior p(x|y) = exp[−f (x)− g(x)]/Z → convex potential f (x) + g(x)
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Highest posterior density region

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cα
dx = 1− α,

We consider the highest posterior density (HPD) region

C∗
α =

{
x : f (x) + g(x)︸ ︷︷ ︸

potential

≤ γα
}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds,

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior p(x|y) = exp[−f (x)− g(x)]/Z is log-concave on RN . Then, for any
α ∈ (4 exp[(−N/3)], 1), the HPD region C∗

α is contained by

Ĉα =
{
x : f (x) + g(x) ≤ γ̂α = f (x̂MAP) + g(x̂MAP) +

√
Nτα + N

}
,

with a positive constant τα =
√
16 log(3/α) independent of p(x|y).

We only need to evaluate f + g on the MAP estimation x̂MAP!
Tob́ıas I. Liaudat 5



Highest posterior density region

Posterior credible region:

p(x ∈ Cα|y) =
∫
x∈RN

p(x|y)1Cα
dx = 1− α,

We consider the highest posterior density (HPD) region

C∗
α =

{
x : f (x) + g(x)︸ ︷︷ ︸

potential

≤ γα
}
, with γα ∈ R, and p(x ∈ C∗

α|y) = 1− α holds,

Theorem 3.1 (Pereyra, 2017)

Suppose the posterior p(x|y) = exp[−f (x)− g(x)]/Z is log-concave on RN . Then, for any
α ∈ (4 exp[(−N/3)], 1), the HPD region C∗

α is contained by
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MAP-based uncertainty quantification

Cai et al. (2018b)

UQ techinques:

• Hypothesis test with significance α

▶ e.g. with respect to a surrogate image
with an inpainted structure.

• Local credible intervals (LCI)

▶ Test the approx HPD region for each
pixel or super-pixel in the image.

• Fast pixel-wise errors at different scales

▶ Test the approx HPD region from the
coefficients of a multi-resolution
decomposition of the image.

Tob́ıas I. Liaudat 6



Scalable Bayesian uncertainty quantification

1. Scalability → Need to rely on optimisation sampling, use the MAP estimator

2. Uncertainty quantification → Need the potential to be convex and explicit

3. Good reconstruction → Need to use data-driven (learned) approaches

The approach requires our prior to be convex and with an explicit potential

→ We constrain our prior to be convex, but we gain an effortless UQ!

We use the neural-network-based convex regulariser from Goujon et al. (2023):

• Shallow network using learned spline-based activation functions trained as a
(multi-)gradient step denoiser.

• Properties: Explicit cost, Convex, Smooth regulariser with known Lipschitz constant.
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Computing time and likelihood evaluations

Computation wall-clock times for the W28 image in seconds.

Models
MAP Posterior LCIs Fast
optim. sampling 8× 8 pixel UQ

Wavelet-based 0.94 36.0× 103 149.7 —
QuantifAI 0.64 6.44× 103 108.2 0.17

The number of measurement operator evaluations used by QuantifAI for the W28 image.

MCMC LCIs LCIs Fast
sampling 8× 8 16× 16 pixel UQ

11× 106 81.5× 103 21.2× 103 28

The fast pixel UQ is 106 and 103 times faster than the MCMC sampling and LCIs, respectively.

We rely on an iterative algorithm for the optimisation, which can be computationally
expensive:

• We need to decrease the number of iteration to further accelerate
Tob́ıas I. Liaudat 8
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Faster reconstruction: algorithm unrolling

Based on: EVIL-Deconv: Efficient Variability-Informed Learned Deconvolution using
Algorithm Unrolling (Kern, Kervazo & Bobin, 2024 (submitted))

Main motivation:

1. Reduce the number of iterations!

2. Improve reconstruction performance

The main algorithm step which is unrolled for L steps

xl+1 = gl(xl +Φl(M)(y −M ∗ xl))

• Φl(M) : Learned preconditioning step based on CNNs with M being the PSF

• gl : Learned proximal operator (denoiser) based on DRUNets

Everything trained on a supervised manner end-to-end for th L unrolled steps.
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Faster reconstruction: algorithm unrolling

EVIL-Deconv results:

• Greatly reduced computation budget

• Great reconstruction quality (for in-distribution data)

EVIL-Deconv drawbacks:

• Lost interpretation of the reconstruction (which is helpful for UQ)

▶ Is it the fixed point of an equation?
▶ Is the reconstruction related to a posterior probability distribution?

• UQ is missing

These drawbacks limit its scientific application
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CARB: Conformalized Augmented Radio Bootstrap

Based on: Uncertainty quantification for fast reconstruction methods using augmented
equivariant bootstrap: Application to radio interferometry
(Cherif, Liaudat, Kern, Kervazo & Bobin, 2024 (arXiv:2410:23178) )

Based on the equivariant Bootstrap framework of Tachella and Pereyra, 2023

Given an observation model y = Ax + n (e.g. RI imaging), group actions {Tg}g∈G such that
Tgx ∈ X and a reconstruction method x̂(y) = f (y) (e.g. EVIL-Deconv):

For i = 1, . . . ,N:

1. Draw transform gi from G and sample noise ni ∼ N (0, σ2I )

2. Build bootsrap measurement ỹi = ATgi x̂(y) + ni := Agi x̂(y) + ni

3. Reconstruct x̃i = T−1
gi x̂(ỹi )

4. Collect error estimate ei = ∥x̂(y)− x̃i∥2

Tob́ıas I. Liaudat 11
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4. Collect error estimate ei = ∥x̂(y)− x̃i∥2

Tob́ıas I. Liaudat 11



CARB: Conformalized Augmented Radio Bootstrap

Given an observation model y = Ax + n (e.g. RI imaging), group actions {Tg}g∈G such that
Tgx ∈ X and a reconstruction method x̂(y) = f (y).

Main idea: Assuming that X is G-invariant, we can have access to multiple virtual forward
operators, ATgi := Agi . If Tgi is properly chosen based on X and A, and A is not G-equivariant,
the composition ATgi can have different null spaces than A helping to probe the
variability of the estimator x̂(y) and characterize its uncertainties with respect to x⋆

(ground truth).

Motivation:

• Unsupervised method → No ground truth required

• Independent of the reconstruction method and each sample trivially can run in parallel

• Well-suited to ultra-fast reconstruction methods, e.g. unrolled algorithms

• Carefully selected group transforms allow us to explore the big nullspace of the RI
imaging forward operator and better characterise the errors

Tob́ıas I. Liaudat 12
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CARB: Conformalized Augmented Radio Bootstrap

CARB method consists of:

1. Fast reconstruction algorithm (e.g. EVIL-Deconv),

2. Equivariant bootstrap framework,

3. Adapted group actions for the RI imaging problem,

4. Conformalisation procedure: Risk-Controlling Prediciton Sets (RCPS) to have statistical
guarantees on the coverage (Angelopoulos & Bates, 2023).

Pixel-wise UQ maps: From the collection of N bootstrap samples, {x̃i}Ni=1, we build
confidence regions, Cα, for x⋆ (ground truth) using qα the top α-quantile of the samples
{|x̂(y)− x̃i |}Ni=1, with Cα = {x : |x − x̂(y)| < qα}.
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CARB: Conformalized Augmented Radio Bootstrap

The group actions we consider are:

1. Circular shift translations not exceeding 2 pixels,

2. Image flips over the horizontal and vertical axis,

3. Rotations of 90-degrees multiples,

4. Invertible 2D radially-symmetric filters in the
specific form of low-shelving and high-shelving
filters with varying cuttoff frequencies.

Examples of (4) filter transformations:
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Low-shelving filters
High-shelving filters

The final group action: a random composition of the aforementioned transformations, where
each transformation is applied with a given probability.

• It allows us to significantly expand the number of possible group action, helping to
estimate uncertainties better.
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Numerical experiments: Quantitative UQ comparison

Length ratio: We compare the average ℓ2 norm ratio between the confidence interval lengths
and the ground truth image to study the tightness of the error estimations.

Empirical coverage: We empirically compute Ey{P(Î−α (y) < x⋆ − x̂(y) < Î+α (y))|y} (error

rate) over all pixels in the image dataset, where α (risk level) is set to 0.1, and Î−α (y), Î+α (y)
are the estimated lower and higher interval limits.

Method Length Coverage

Quantile Regression (QR) 0.15 14%
Conformalized QR 204.08 92%
Parametric Bootstrap 0.07 0%
Equivariant Bootstrap 0.13 7%
Augmented Radio Bootstrap 0.29 87%
CARB 0.34 91%

Tight intervals and very good coverage! Results showcase:

• the importance of selecting adapted group actions,

• the conformalisation is useful once the intervals are already good.
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Numerical experiments: Qualitative UQ comparison

Groundtruth
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RI image reconstruction result for the unrolling algorithm.
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Numerical experiments: Qualitative UQ comparison
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Numerical experiments: Coverage plots

Coverage plots:
We estimate a confidence region for x⋆,
derived from the pivotal statistic
∥x⋆ − x̂(Y )∥22 related to the estimation
MSE.
We then compute the empirical coverage
probabilities on the test set, as measured
by the proportion of test images that lie
within the confidence regions for a range
of confidence levels.

We still need to validate the method on
higher dimensions.
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group actions.
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Bonus: Can we go even faster?

Based on: Generative imaging for radio interferometry with fast UQ
(Mars, Liaudat, Whitney, Betcke & McEwen, 2024 (in prep.))

Based on the regularised conditional GAN (rcGAN) proposed in Bendel et al., 2023 that is able
to generate approximate posterior samples

Main points of the proposed approach:

• Builds from the conditional Wasserstein GAN (Adler and Öktem, 2018)

• Regularisation to avoid mode collapse and reward sample diversity.

• Under simplifying assumptions, the first two moments of the approximated posterior
(mean and covariance) match the true posterior.

• We condition on the dirty image and the PSF.

• Extremely-fast reconstruction and sampling.
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Regularised conditional GAN for RI imaging and fast UQ
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Regularised conditional GAN for RI imaging and fast UQ

Reconstruction of simulated MeerKAT observation of galaxies from Illustris TNG simulations.

High reconstruction PSNR and good correlation between the oracle error and the Std Dev.

A deeper validation of the produced samples is yet to be done.
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Bonus n2: Regularised conditional GAN for mass-mapping in cosmology

Based on: Generative modelling for mass-mapping with fast uncertainty quantification
(Whitney, Liaudat, Price, Mars & McEwen, 2024 (arXiv:2410.24197) )

We adapted and applied the regularised conditional GAN to the dark matter mass-mapping
problem in cosmology.

• We use the posterior mean as reconstruction and posterior samples for UQ.

• Training of the MMGAN for real data was done with mock COSMOS simulations.

• Validation using the κTNG simulations. Results for simulations below:

Pearson ↑ RMSE ↓ PSNR ↑

MMGAN (Ours) 0.727 0.0197 31.674
Kaiser-Squires 0.622 0.0229 30.387

UQ validation: Computed coverage probabilities using 100 maps at 90% and 95% confidence
intervals obtaining 85% and 89% empirical coverage probability.
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Bonus n2: Regularised conditional GAN for mass-mapping in cosmology

We applied MMGAN to real
COSMOS field data from HST.

We compare on real data with:

• DLPosterior (Remy, B.
et al., 2023)

• Kaiser-Squires
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Conclusions

We have explored different reconstruction methods with UQ for radio interferometric imaging
(and other problems) exploiting different ML/AI tools:

1. In a Bayesian framework, favour optimisation and avoid sampling by approximating the
HPD region while using learned data-driven priors.

2. Accelerate reconstruction with algorithm unrolling but loose interpretability.

3. The CARB method picks up the unrolled method and provides UQ in an unsupervised
framework based on equivariant bootstrap.

4. The regularised conditional GAN trained on a supervised manner allows us to do instant
(approximate) posterior sampling.

Questions?
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