Convergent Plug-and-Play algorithms for positron emission tomography reconstruction

M. Savanier F. Sureau C. Comtat

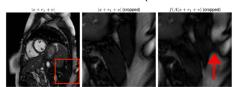
BioMaps, Université Paris-Saclay, CEA, CNRS, Inserm, SHFJ

Deep CosmoStat Days, January 2025

Deep Learning and medical image reconstruction

• Wide diversity of Deep Learning techniques (DL) to solve inverse problems with promising experimental results

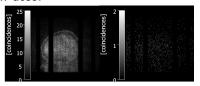
• Stable and plausible instabilities ("hallucinations") observed in medical image reconstruction with DL (Antun'20, Gottschling'20)



Stable instabilities (Vegard'20)

Deep Learning for PET reconstruction

 III-posed tomographic inverse problem with Poisson data ⇒ Instabilities at low-dose?



Effect of dose reduction (/60) on measured data

- Learning/validating in a typically low data regime in a medical context $(\mathcal{O}(10-100) \text{ exams}) \Rightarrow Robustness?$
- Large scale tomographic 3D/4D inverse problem ($\mathcal{O}(10^7-10^8)$ variables) \Rightarrow *Numerical efficiency?*

Aim

Develop & validate **robust and numerically efficient** low-count PET reconstruction schemes using DL

Developing robust DL methods

Strategy

- Focus on learning what need to be learned (not the forward model!)
- Focus on supervised learning even though small research databases (constrained learning, fewer parameters)
- Use tools from statistics, optimization to understand robustness issues and propose a robust reconstruction method
- Develop validation tools for PET DL reconstructed images?

Hybrid DL/MBIR methods

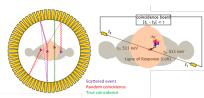
Hybrid techniques:

- Reconstruction bricks/layers from convex optimization
- Learned adaptive (implicit) regularization
- More control on the reconstruction (mathematical characterization)

	Unfolding	Synthesis	Plug-and-Play
Learning	End-to-end	offline	offline
Optimisation with network	End-to-end	Yes	No
Memory load	$\propto N_{unroll} N_{params}$	$\propto N_{params}$	$\propto N_{\it params}$
Convergence	Not in practice (N_{unroll})	?	Yes

PET model for reconstruction





Statistical forward model (physics, geometry of scanner, potentially pharmacodynamics) for quantitative imaging

$$y_{it} = \mathcal{P}\left(\langle \mathbf{h}_i, \mathbf{x}_t \rangle + \underbrace{\bar{s}_{it} + \overline{r}_{it}}_{\bar{b}_{it}}\right)$$

Applications in:

Oncology

Neurology

Pharmacology

 y_{it} : data in LOR i frame t

 $\mathbf{h}_i = [h_{ij}]_{j \in [1,J]}$: line i of \mathbf{H}

 $\mathbf{x}_t \in \mathbb{R}^J$ activity for frame t

 \bar{s}_{it} : scatter, \bar{r}_{it} : randoms expectations

Model-based reconstruction (e.g. ML-EM)

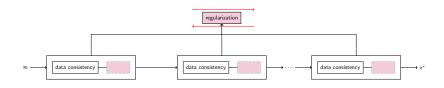
$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in [0, +\infty[^N]}{\operatorname{argmin}} \ \underbrace{f(\mathbf{x}; \mathbf{y}, \mathbf{b}) + R(\mathbf{x})}_{C(\mathbf{x})} \iff 0 \in \partial (f + \iota_{[0, +\infty[^N]} + R)(\hat{\mathbf{x}})$$

where
$$f(\mathbf{x}; \mathbf{y}, \mathbf{b}) = \sum_{m=1}^{M} [\mathbf{y}]_m \log(\frac{[\mathbf{y}]_m}{[\mathbf{H}\mathbf{x} + \mathbf{b}]_m}) + [\mathbf{H}\mathbf{x} + \mathbf{b}]_m - [\mathbf{y}]_m$$
.

Many algorithms T_C such that $\hat{\mathbf{x}} = T_C(\hat{\mathbf{x}}, \mathbf{y})$.

Choice for T_C : common reconstruction algorithms are based on

- with smooth priors: Majorization-Minimization with Bregman majorants (Rossignol'22), Forward-Backward
- with non smooth priors: ADMM/Douglas-Rachford



PnP iterations

$$(\forall n \in \mathbb{N}) \qquad \mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \partial R, \mathbf{y}) \qquad \mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \operatorname{prox}_R, \mathbf{y})$$
$$(\forall n \in \mathbb{N}) \qquad \mathbf{x}^{n+1} = T_C(\mathbf{x}^n, NN, \mathbf{y})$$

- **1** How to choose T_C ?
- **2** How to choose NN such that $(\mathbf{x}^n)_{n\in\mathbb{N}}$ converges to some $\overline{\mathbf{x}}$?
- **3** Can we characterize $\overline{\mathbf{x}}$?
- **4** Can we control to which $\overline{\mathbf{x}}$ the sequence $(\mathbf{x}^n)_{n\in\mathbb{N}}$ converges?

PnP iterations

$$(\forall n \in \mathbb{N}) \qquad \mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \partial R, \mathbf{y}) \qquad \mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \operatorname{prox}_R, \mathbf{y})$$
$$(\forall n \in \mathbb{N}) \qquad \mathbf{x}^{n+1} = T_C(\mathbf{x}^n, NN, \mathbf{y})$$

- **1** How to choose T_C ?
- **2** How to choose NN such that $(\mathbf{x}^n)_{n\in\mathbb{N}}$ converges to some $\overline{\mathbf{x}}$?
- 3 Can we characterize \bar{x} ?
- **4** Can we control to which $\bar{\mathbf{x}}$ the sequence $(\mathbf{x}^n)_{n\in\mathbb{N}}$ converges?

Two PnP algorithms

Algorithm PnP ADMM (Pesquet'21)

Require:
$$\mathbf{D}_{\Theta} : \mathbb{R}^{N} \mapsto [0, +\infty[^{N}]$$
 for $n = 0$ to $N - 1$ do $\mathbf{x}^{n+1} = \text{prox}_{\mu \lambda f}(\mathbf{z}^{n} - \mathbf{u}^{n})$ $\mathbf{z}^{n+1} = \text{prox}_{\mu R}(\mathbf{x}^{n+1} + \mathbf{u}^{n})$ $\mathbf{z}^{n+1} = \mathbf{D}_{\Theta}(\mathbf{x}^{n+1} + \mathbf{u}^{n})$ $\mathbf{u}^{n+1} = \mathbf{u}^{n} + \mathbf{x}^{n+1} - \mathbf{z}^{n+1}$ end for

Algorithm PnP FB (Hurault'22)

$$\begin{aligned} & \text{for } n = 0 \text{ to } \textit{N} - 1 \text{ do} \\ & \textit{x}^{n+1} = \mathrm{prox}_{\tau f} (1 - \tau \nabla \textit{R}(\textit{x}^n)) \\ & \text{Backtracking on } \tau \text{ given } \textit{C}, \, \textit{x}^{n+1} \text{ and } \textit{x}^n \\ & \textit{x}^{n+1} = \mathrm{prox}_{\tau f} (\frac{\tau}{\lambda} \textbf{D}_{\Theta, GS}(\textit{x}^n) + (1 - \frac{\tau}{\lambda}) \textit{x}^n) \end{aligned}$$

When \mathbf{D}_{Θ} is the resolvent of a maximal monotone operator (MMO) i.e. \mathbf{D}_{Θ} is FNE, \mathbf{x}^n and \mathbf{z}^n converge to $\overline{\mathbf{x}}$ provided there exists at least 1 fixed point

If
$$\mathbf{Id} - \mathbf{D}_{\Theta,GS} = \nabla R_{\Theta}$$
 is
 L -Lipschitz, $\lambda L > \tau > 0$

- \mathbf{x}^n converges to $\overline{\mathbf{x}}$, such that for $C = f + \iota_{[0,+\infty[^N} + R_{\Theta}/\lambda, \partial C(\overline{\mathbf{x}})/\partial \overline{\mathbf{x}} = 0]$
- $C(\mathbf{x}^n)$ is non-increasing.

no uniqueness of stationary points

Two PnP algorithms

Algorithm PnP ADMM (Pesquet'21)

Require:
$$\mathbf{D}_{\Theta}: \mathbb{R}^{N} \mapsto [0, +\infty[^{N}]$$

for $n = 0$ to $N - 1$ do
 $\mathbf{x}^{n+1} = \operatorname{prox}_{\mu \lambda f}(\mathbf{z}^{n} - \mathbf{u}^{n})$
 $\mathbf{z}^{n+1} = \operatorname{prox}_{\mu R}(\mathbf{x}^{n+1} + \mathbf{u}^{n})$
 $\mathbf{z}^{n+1} = \mathbf{D}_{\Theta}(\mathbf{x}^{n+1} + \mathbf{u}^{n})$
 $\mathbf{u}^{n+1} = \mathbf{u}^{n} + \mathbf{x}^{n+1} - \mathbf{z}^{n+1}$
end for

Algorithm PnP FB (Hurault'22)

$$\begin{split} 2 \mathbf{D}_{\Theta} &- \mathbf{Id} \text{ is } 1\text{-Lipschitz:} \\ &\longrightarrow \text{Lipschitz regularization} \\ \beta \max \{|||J_{2\mathbf{D}_{\Theta}-\mathbf{Id}}(\bar{\mathbf{x}})||| + \epsilon - 1, 0\}^{1+\alpha} \text{ with} \\ \bar{\mathbf{x}} &= \kappa \bar{\mathbf{x}}_{\mathrm{EM}} + (1-\kappa)\mathbf{x}_{\mathrm{in}}, \, \kappa \sim \mathcal{U}[0,1] \end{split}$$

$$\begin{split} & \mathbf{D}_{\Theta,\mathrm{GS}} = \mathbf{Id} - \nabla R_{\Theta} \colon \mathsf{compose} \\ & \mathsf{potential} \ \mathsf{function} \ (\mathsf{e.g.} \\ & \| \mathbf{Id} - \cdot \|^2) \ \mathsf{with} \ \mathsf{some} \ \mathbf{N}_{\Theta} \ \mathsf{and} \\ & \mathsf{compute} \ \mathsf{gradient} \\ & (\mathbf{D}_{\Theta,\mathrm{GS}} \neq \mathbf{N}_{\Theta}) \\ & \mathbf{D}_{\Theta,\mathrm{GS}}(\mathbf{x}) = \mathbf{N}_{\Theta}(\mathbf{x}) + J_{\mathbf{N}_{\Theta}(\mathbf{x})}^{\top}(\mathbf{x} - \mathbf{N}_{\Theta}(\mathbf{x})) \end{split}$$

Learning the prior in PnP

Model agnostic

- Off-the-shelf non deep denoisers (Heide'14)
- Gaussian deep denoisers as prox surrogates: Bayesian interpretation (Meinhardt'17, Pesquet'21)
- Denoising score matching for learning ∇R

Model dependent

- In PET: Prox surrogate mapping low-to-standard dose images (Sureau'21)
- Adversarial regularization noisy and "clean" images (Cohen'21, Chand'24)

Learning the prior in PnP

Model agnostic

- Off-the-shelf non deep denoisers (Heide'14)
- Gaussian deep denoisers as prox surrogates: Bayesian interpretation (Meinhardt'17, Pesquet'21)
- Denoising score matching for learning ∇R

Model dependent

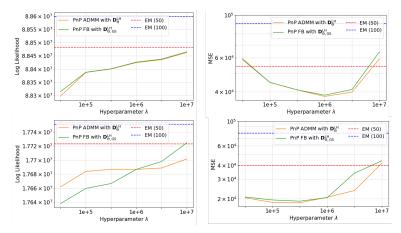
- In PET: Prox surrogate mapping low-to-standard dose images (Sureau'21)
- Adversarial regularization noisy and "clean" images (Cohen'21, Chand'24)

Training D_{Θ} and $D_{\Theta,GS}$ as low- to high-dose denoisers

- Brain simulation [¹⁸F]-FDG (Biograph 6 TrueP/TrueV)
- MRI/PET on 14 patients (11 for training)
- PET piecewise constant phantoms (100 anatomical regions)
- Simulations with normalization, attenuation, scatter, randoms, resolution modeling (4mm)
- Augmentation with dose variations (11 patients x 10 doses)
- References = CASToR reconstructions
- Inputs = CASToR reconstructions with fewer counts (/ 5)
- Differentiable U-net like architectures

When $\mathbf{D}_{\Theta}^{\mathrm{LH}}$ and $\mathbf{D}_{\Theta,\mathrm{GS}}^{\mathrm{LH}}$ are trained on the same task, winner between PnP FB and PnP ADMM?

In principle, CNS on PnP FB lighter but...



- → Similar images with PnP ADMM and PnP FB
- → High sensitivity to hyperparameters (oversmooth)
- → What can be said about the fixed point?

PnP iterations

$$(\forall n \in \mathbb{N}) \qquad \mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \partial R, \mathbf{y}) \qquad \mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \operatorname{prox}_R, \mathbf{y})$$
$$(\forall n \in \mathbb{N}) \qquad \mathbf{x}^{n+1} = T_C(\mathbf{x}^n, NN, \mathbf{y})$$

- **1** How to choose T_C ?
- **2** How to choose NN such that $(\mathbf{x}^n)_{n\in\mathbb{N}}$ converges to some $\overline{\mathbf{x}}$?
- **3** Can we characterize $\overline{\mathbf{x}}$?
- **4** Can we control to which $\overline{\mathbf{x}}$ the sequence $(\mathbf{x}^n)_{n\in\mathbb{N}}$ converges?

Characterizing the fixed points

• PnP FB with learned gradient $\mathbf{D}_{\Theta,\mathrm{GS}}$ (for $\overline{\mathbf{x}} \in \mathrm{int}([0,+\infty[^N])$)

$$0 \in \nabla f(\overline{\mathbf{x}}; \mathbf{y}) + (\overline{\mathbf{x}} - \mathbf{D}_{\Theta.GS}(\overline{\mathbf{x}}))/\lambda$$

• PnP ADMM with learned prox surrogate \mathbf{D}_{Θ} (for $\overline{\mathbf{x}} \in \text{int}([0, +\infty[^N))$

$$\overline{\mathbf{x}} = \mathbf{D}_{\Theta}(\overline{\mathbf{x}} - \lambda \nabla f(\overline{\mathbf{x}}; \mathbf{y}))$$
 (FP)

 \longrightarrow Use (FP) for training \mathbf{D}_{Θ} in PnP ADMM

Characterizing the fixed points

In practice

We want $\mathbf{x}_{\mathrm{HD}} = \mathbf{D}_{\Theta}(\mathbf{x}_{\mathrm{HD}} - \lambda_{\mathrm{Train}} \nabla f(\mathbf{x}_{\mathrm{HD}}; \mathbf{y}_{\mathrm{LD}}))$, we choose to minimize

$$\frac{\|\mathbf{D}_{\Theta}(\mathbf{x}_{\mathrm{HD}} - \lambda_{\mathrm{Train}} \nabla f(\mathbf{x}_{\mathrm{HD}}; \mathbf{y}_{\mathrm{LD}})) - \mathbf{x}_{\mathrm{HD}}\|^{2}}{\|\mathbf{x}_{\mathrm{HD}}\|^{2}}; \quad \lambda_{\mathrm{Train}} = \alpha_{\mathrm{Train}} \times \sqrt{\|\mathbf{H}\mathbf{x}_{\mathrm{HD}} + \mathbf{b}\|_{1}}$$

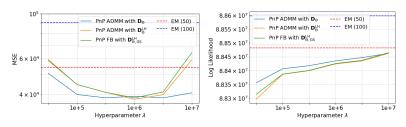
and we want the existence and uniqueness of the fixed point

$$f \iff f + \frac{\zeta}{2} \| \cdot - \mathbf{x}_{\text{EM}} \|^2 \quad (\zeta = 10^{-6})$$

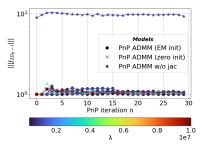
Féjer monotonicity of $(\mathbf{x}^{n+1} + \mathbf{u}^n) \longrightarrow \beta \max\{||J_{2\mathbf{D}_{\Theta} - \mathbf{Id}}(\tilde{\mathbf{x}})||| + \epsilon - 1, 0\}^{1+\alpha}$ with $\tilde{\mathbf{x}} \in B_{\|\mathbf{x}_{\mathrm{EM}} - \mathbf{x}_{\mathrm{in}}\|}(\mathbf{x}_{\mathrm{in}})$ given $\mathbf{x}^0 = \mathbf{x}_{\mathrm{EM}}$ and $\mathbf{u}^0 = 0$

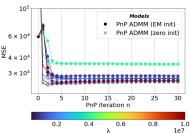
 \triangle Only \mathbf{D}_{Θ} locally FNE needed

Evaluation with fixed point resolvent



 \longrightarrow lowest MSE similar with previous PnP-ADMM with $\mathbf{D}_{\Theta}^{\mathrm{LH}}$ and PnP-FB with $\mathbf{D}_{\Theta,\mathrm{GS}}^{\mathrm{LH}}$ but across a wider range of λ

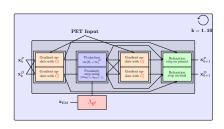




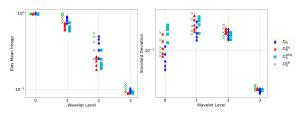
Evaluation of different FNE architectures

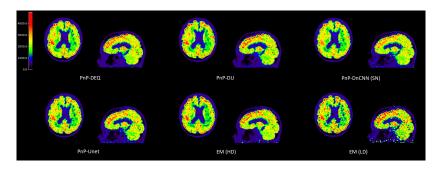
\triangle Jacobian regularization $(\beta \max\{||J_{2D_{\Theta}-Id}(\tilde{\mathbf{x}})||| + \epsilon - 1, 0\}^{1+\alpha})$ is costly and very sensitive to HP

	Architecture	FNE by design	# params	Approx. time/epoch	# epochs with jac	Runtime
DΘ	U-net	No	1 079 000	2h	20	Fast
$\textbf{D}_{\Theta}^{\mathrm{SN}}$	DnCNN with spectral norm	Yes	167 620	1min	-	Fast
$\mathbf{D}_{\Theta}^{\mathrm{DU}}$	Unfolding	No but close (Pustelnik'23)	59 689	3h	3	$\propto \textit{N}_{\rm layers} = 10$
$D_{\Theta}^{\mathrm{DEQ}}$	Deep equilibrium	Yes	18 298	2h	-	$\propto \textit{N}_{\rm iter} = 1000$

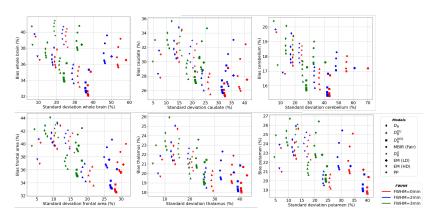


\longrightarrow Evaluation on 50 data replicates from the same phantom (multiscale/ROI-based analysis)

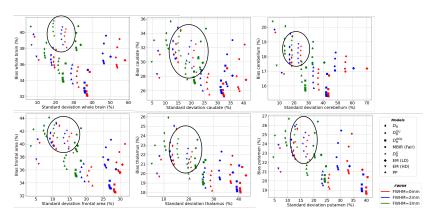




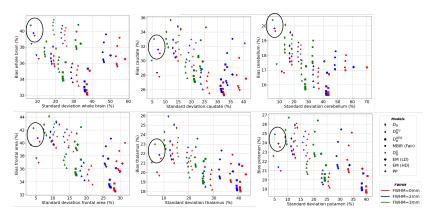
 \longrightarrow SN not competitive



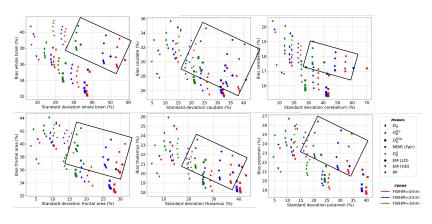
 \longrightarrow Outperforms MBIR and PP + PnP with Gaussian denoiser



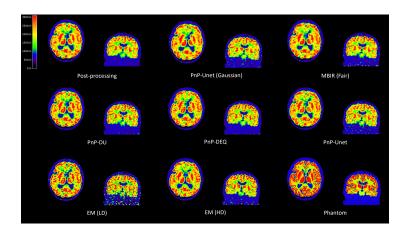
 \longrightarrow Outperforms MBIR and PP + PnP with Gaussian denoiser



 \longrightarrow Outperforms MBIR and PP + PnP with Gaussian denoiser



 \longrightarrow Outperforms MBIR and PP + PnP with Gaussian denoiser



Conclusions

- PnP reconstruction for PET based on ADMM/DR with convergence guarantees and existence of a unique fixed point (available in CASToR -F. Sureau)
- interest of learning a resolvent of a MMO for reconstruction
- constrained network (DEQ, DU) embedding prior knowledge easier training/more robust to out-of-distribution cases
- No need for overparameterized operators

Perspectives

- investigate further relationship between optimization and Jacobian regularization
- MRI conditioning of the learned operator
- investigate further the robustness of our approach to data perturbation

- [1] Emilie Chouzenoux et al. "Convergence Results for Primal-Dual Algorithms in the Presence of Adjoint Mismatch". In: SIAM Journal on Imaging Sciences (Jan. 2023). Publisher: Society for Industrial and Applied Mathematics University City, Philadelphia. DOI: 10.1137/22M1490223.
- [2] Regev Cohen et al. "It Has Potential: Gradient-Driven Denoisers for Convergent Solutions to Inverse Problems". In: Advances in Neural Information Processing Systems. Vol. 34. 2021, pp. 18152–18164.
- [3] Minh N. Dao and Hung M. Phan. "Adaptive Douglas—Rachford Splitting Algorithm for the Sum of Two Operators". In: *SIAM Journal on Optimization* 29.4 (2019), pp. 2697–2724. DOI: 10.1137/18M121160X.
- [4] Alexis Goujon, Sebastian Neumayer, and Michael Unser. "Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms". In: (2023). Publisher: arXiv Version Number: 1. DOI: 10.48550/ARXIV.2308.10542.
- [5] Samuel Hurault, Arthur Leclaire, and Nicolas Papadakis. *Gradient Step Denoiser for convergent Plug-and-Play*. 2022. DOI: 10.48550/arXiv.2110.03220.

- [6] Samuel Hurault et al. Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse Problems. en. June 2023. URL: http://arxiv.org/abs/2306.03466.
- [7] Jean-Christophe Pesquet et al. "Learning Maximally Monotone Operators for Image Recovery". en. In: SIAM Journal on Imaging Sciences 14.3 (Jan. 2021), pp. 1206–1237. DOI: 10.1137/20M1387961.
- [8] M. Savanier, Claude Comtat, and Florent Sureau. "Learning with fixed point condition for convergent PnP PET reconstruction". In: ISBI 2024 - 21st IEEE International Symposium on Biomedical Imaging. Athenes, Greece, May 2024.
- [9] Florent Sureau et al. "Convergent ADMM Plug and Play PET Image Reconstruction". In: Proceedings of the 17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine. 2023. DOI: 10.48550/arXiv.2310.16846.