Convergent Plug-and-Play algorithms for positron emission tomography reconstruction

<u>M. Savanier</u> F. Sureau C. Comtat

BioMaps, Université Paris-Saclay, CEA, CNRS, Inserm, SHFJ

Deep CosmoStat Days, January 2025

Deep Learning and medical image reconstruction

• Wide diversity of Deep Learning techniques (DL) to solve inverse problems with promising experimental results

• Stable and plausible instabilities ("hallucinations") observed in medical image reconstruction with DL (Antun'20, Gottschling'20)

Stable instabilities (Vegard'20)

Deep Learning for PET reconstruction

• Ill-posed tomographic inverse problem with Poisson data ⇒ *Instabilities at low-dose?*

Effect of dose reduction (/60) on measured data

- Learning/validating in a typically low data regime in a medical context (O(10 100) exams) ⇒ Robustness?
- Large scale tomographic 3D/4D inverse problem ($\mathcal{O}(10^7 10^8)$) variables) \Rightarrow *Numerical efficiency?*

Aim

Develop & validate robust and numerically efficient low-count PET reconstruction schemes using DL

Strategy

- Focus on learning what need to be learned (not the forward model!)
- Focus on supervised learning even though small research databases (constrained learning, fewer parameters)
- Use tools from statistics, optimization to understand robustness issues and propose a robust reconstruction method
- Develop validation tools for PET DL reconstructed images?

Hybrid DL/MBIR methods

Hybrid techniques:

- Reconstruction bricks/layers from convex optimization
- Learned adaptive (implicit) regularization
- More control on the reconstruction (mathematical characterization)

	Unfolding	Synthesis	Plug-and-Play	
Learning	End-to-end	offline	offline	
Optimisation with network	End-to-end	Yes	No	
Memory load	$\propto \textit{N}_{unroll}\textit{N}_{params}$	$\propto \textit{N}_{\it params}$	$\propto N_{params}$	
Convergence	Not in practice (<i>N_{unroll}</i>)	?	Yes	

PET model for reconstruction

Statistical forward model (physics, geometry of scanner, potentially pharmacodynamics) for quantitative imaging

$$y_{it} = \mathcal{P}\left(\langle \mathbf{h}_i, \mathbf{x}_t \rangle + \underbrace{\overline{s}_{it} + \overline{r}_{it}}_{\overline{b}_{it}}\right)$$

 y_{it} : data in LOR *i* frame *t* $\mathbf{h}_i = [h_{ij}]_{j \in [1, J]}$: line *i* of **H** $\mathbf{x}_t \in \mathbb{R}^J$ activity for frame *t* \bar{s}_{it} : scatter, \bar{r}_{it} : randoms expectations

Applications in:

Oncology

Neurology

• Pharmacology

Model-based reconstruction (e.g. ML-EM)

$$\hat{\mathbf{x}} = \underset{\mathbf{x} \in [0, +\infty[^{N}]}{\operatorname{argmin}} \quad \underbrace{f(\mathbf{x}; \mathbf{y}, \mathbf{b}) + R(\mathbf{x})}_{C(\mathbf{x})} \iff 0 \in \partial (f + \iota_{[0, +\infty[^{N}]} + R)(\hat{\mathbf{x}})$$

where $f(\mathbf{x}; \mathbf{y}, \mathbf{b}) = \sum_{m=1}^{M} [\mathbf{y}]_m \log(\frac{[\mathbf{y}]_m}{[\mathbf{H}\mathbf{x} + \mathbf{b}]_m}) + [\mathbf{H}\mathbf{x} + \mathbf{b}]_m - [\mathbf{y}]_m$.

Many algorithms T_C such that $\hat{\mathbf{x}} = T_C(\hat{\mathbf{x}}, \mathbf{y})$.

Choice for T_C : common reconstruction algorithms are based on

- with smooth priors: Majorization-Minimization with Bregman majorants (Rossignol'22), Forward-Backward
- with non smooth priors: ADMM/Douglas-Rachford

PnP iterations

$$(\forall n \in \mathbb{N})$$
 $\mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \partial R, \mathbf{y})$ $\mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \operatorname{prox}_R, \mathbf{y})$

$$(\forall n \in \mathbb{N})$$
 $\mathbf{x}^{n+1} = T_C(\mathbf{x}^n, NN, \mathbf{y})$

- **1** How to choose T_C ?
- **2** How to choose NN such that $(\mathbf{x}^n)_{n \in \mathbb{N}}$ converges to some $\overline{\mathbf{x}}$?
- **3** Can we characterize $\overline{\mathbf{x}}$?
- **4** Can we control to which $\overline{\mathbf{x}}$ the sequence $(\mathbf{x}^n)_{n \in \mathbb{N}}$ converges?

PnP iterations

$$(\forall n \in \mathbb{N})$$
 $\mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \partial R, \mathbf{y})$ $\mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \operatorname{prox}_R, \mathbf{y})$

$$(\forall n \in \mathbb{N})$$
 $\mathbf{x}^{n+1} = T_C(\mathbf{x}^n, NN, \mathbf{y})$

- **1** How to choose T_C ?
- **2** How to choose NN such that $(\mathbf{x}^n)_{n \in \mathbb{N}}$ converges to some $\overline{\mathbf{x}}$?
- **3** Can we characterize $\overline{\mathbf{x}}$?

4 Can we control to which $\overline{\mathbf{x}}$ the sequence $(\mathbf{x}^n)_{n \in \mathbb{N}}$ converges?

Two PnP algorithms

Algorithm PnP ADMM (Pesquet'21)

Require:
$$\mathbf{D}_{\Theta} : \mathbb{R}^{N} \mapsto [0, +\infty[^{N} for n = 0 \text{ to } N - 1 \text{ do}$$

 $\mathbf{x}^{n+1} = \operatorname{prox}_{\mu\lambda f}(\mathbf{z}^{n} - \mathbf{u}^{n})$
 $\mathbf{z}^{n+1} = \operatorname{prox}_{\mu R}(\mathbf{x}^{n+1} + \mathbf{u}^{n})$
 $\mathbf{z}^{n+1} = \mathbf{D}_{\Theta}(\mathbf{x}^{n+1} + \mathbf{u}^{n})$
 $\mathbf{u}^{n+1} = \mathbf{u}^{n} + \mathbf{x}^{n+1} - \mathbf{z}^{n+1}$
end for

Algorithm PnP FB (Hurault'22)

for
$$n = 0$$
 to $N - 1$ do
 $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau f} (1 - \tau \nabla R(\mathbf{x}^n))$
Backtracking on τ given C , \mathbf{x}^{n+1} and \mathbf{x}^n
 $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau f} (\frac{\tau}{\lambda} \mathbf{D}_{\Theta, GS}(\mathbf{x}^n) + (1 - \frac{\tau}{\lambda})\mathbf{x}^n)$
end for

When D_{Θ} is the resolvent of a maximal monotone operator (MMO) i.e. D_{Θ} is FNE, \mathbf{x}^n and \mathbf{z}^n converge to $\overline{\mathbf{x}}$ \bigwedge provided there exists at least 1 fixed point

If $\mathbf{Id} - \mathbf{D}_{\Theta,GS} = \nabla R_{\Theta}$ is *L*-Lipschitz, $\lambda L > \tau > 0$

> • \mathbf{x}^n converges to $\overline{\mathbf{x}}$, such that for $C = f + \iota_{[0,+\infty[^N]} + R_{\Theta}/\lambda$, $\partial C(\overline{\mathbf{x}})/\partial \overline{\mathbf{x}} = 0$

•
$$C(\mathbf{x}^n)$$
 is non-increasing.

 \bigwedge no uniqueness of stationary points

Algorithm PnP ADMM (Pesquet'21)

Require:
$$\mathbf{D}_{\Theta} : \mathbb{R}^{N} \mapsto [0, +\infty[^{N} for n = 0 \text{ to } N - 1 \text{ do}$$

 $\mathbf{x}^{n+1} = \operatorname{prox}_{\mu\lambda f}(\mathbf{z}^{n} - \mathbf{u}^{n})$
 $\mathbf{z}^{n+1} = \operatorname{prox}_{\mu R}(\mathbf{x}^{n+1} + \mathbf{u}^{n})$
 $\mathbf{z}^{n+1} = \mathbf{D}_{\Theta}(\mathbf{x}^{n+1} + \mathbf{u}^{n})$
 $\mathbf{u}^{n+1} = \mathbf{u}^{n} + \mathbf{x}^{n+1} - \mathbf{z}^{n+1}$
end for

Algorithm PnP FB (Hurault'22)

for
$$n = 0$$
 to $N - 1$ do
 $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau f} (1 - \tau \nabla R(\mathbf{x}^n))$
Backtracking on τ given C , \mathbf{x}^{n+1} and \mathbf{x}^n
 $\mathbf{x}^{n+1} = \operatorname{prox}_{\tau f} (\frac{\tau}{\lambda} \mathbf{D}_{\Theta, GS}(\mathbf{x}^n) + (1 - \frac{\tau}{\lambda})\mathbf{x}^n)$
end for

 $\begin{array}{l} 2\boldsymbol{D}_{\boldsymbol{\Theta}}-\boldsymbol{\mathsf{Id}} \text{ is } 1\text{-Lipschitz:} \\ \longrightarrow \text{Lipschitz regularization} \\ {}^{\beta\max\{|||J_{2\boldsymbol{D}_{\boldsymbol{\Theta}}}-\boldsymbol{\mathsf{Id}}\left(\bar{x}\right)|||+\varepsilon-1,0\}^{1+\alpha} \text{ with} \\ \\ \bar{x}=\kappa\bar{x}_{\mathrm{EM}}+(1-\kappa)x_{\mathrm{in}},\kappa\sim\mathcal{U}[0,1] \end{array}$

$$\begin{split} & \textbf{D}_{\Theta,\mathrm{GS}} = \textbf{Id} - \nabla R_\Theta \text{: compose} \\ & \text{potential function (e.g.} \\ & \| \textbf{Id} - \cdot \|^2 \text{) with some } \textbf{N}_\Theta \text{ and} \\ & \text{compute gradient} \\ & (\textbf{D}_{\Theta,\mathrm{GS}} \neq \textbf{N}_\Theta) \\ & \textbf{D}_{\Theta,\mathrm{GS}}(\textbf{x}) = \textbf{N}_\Theta(\textbf{x}) + J_{\textbf{N}_\Theta(\textbf{x})}^\top(\textbf{x} - \textbf{N}_\Theta(\textbf{x})) \end{split}$$

Learning the prior in PnP

Model agnostic

- Off-the-shelf non deep denoisers (Heide'14)
- Gaussian deep denoisers as prox surrogates: Bayesian interpretation (Meinhardt'17, Pesquet'21)
- Denoising score matching for learning ∇R

Model dependent

- In PET: Prox surrogate mapping low-to-standard dose images (Sureau'21)
- Adversarial regularization noisy and "clean" images (Cohen'21, Chand'24)

Learning the prior in PnP

Model agnostic

- Off-the-shelf non deep denoisers (Heide'14)
- Gaussian deep denoisers as prox surrogates: Bayesian interpretation (Meinhardt'17, Pesquet'21)
- Denoising score matching for learning ∇R

Model dependent

- In PET: Prox surrogate mapping low-to-standard dose images (Sureau'21)
- Adversarial regularization noisy and "clean" images (Cohen'21, Chand'24)

Training \boldsymbol{D}_{Θ} and $\boldsymbol{D}_{\Theta,\mathrm{GS}}$ as low- to high-dose denoisers

- Brain simulation [¹⁸F]-FDG (Biograph 6 TrueP/TrueV)
- MRI/PET on 14 patients (11 for training)
- PET piecewise constant phantoms (100 anatomical regions)
- Simulations with normalization, attenuation, scatter, randoms, resolution modeling (4mm)
- Augmentation with dose variations (11 patients × 10 doses)
- References = CASToR reconstructions
- Inputs = CASToR reconstructions with fewer counts (/ 5)
- Differentiable U-net like architectures

When $D_\Theta^{\rm LH}$ and $D_{\Theta,\rm GS}^{\rm LH}$ are trained on the same task, winner between PnP FB and PnP ADMM?

In principle, CNS on PnP FB lighter but...

- \longrightarrow Similar images with PnP ADMM and PnP FB
- \longrightarrow High sensitivity to hyperparameters (oversmooth)
- \longrightarrow What can be said about the fixed point?

PnP iterations

$$(\forall n \in \mathbb{N})$$
 $\mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \partial R, \mathbf{y})$ $\mathbf{x}^{n+1} = T_C(\mathbf{x}^n, \operatorname{prox}_R, \mathbf{y})$

$$(\forall n \in \mathbb{N})$$
 $\mathbf{x}^{n+1} = T_C(\mathbf{x}^n, NN, \mathbf{y})$

- 1 How to choose T_C ?
- **2** How to choose NN such that $(\mathbf{x}^n)_{n \in \mathbb{N}}$ converges to some $\overline{\mathbf{x}}$?
- **3** Can we characterize $\overline{\mathbf{x}}$?

4 Can we control to which $\overline{\mathbf{x}}$ the sequence $(\mathbf{x}^n)_{n \in \mathbb{N}}$ converges?

PnP FB with learned gradient D_{Θ,GS} (for x̄ ∈ int([0, +∞[^N))) 0 ∈ ∇f(x̄; y) + (x̄ − D_{Θ,GS}(x̄))/λ
PnP ADMM with learned prox surrogate D_Θ (for x̄ ∈ int([0, +∞[^N))) x̄ = D_Θ(x̄ − λ∇f(x̄; y)) (FP)

 \longrightarrow Use (FP) for training \bm{D}_Θ in PnP ADMM

In practice

We want $\mathbf{x}_{HD} = \mathbf{D}_{\Theta}(\mathbf{x}_{HD} - \lambda_{Train} \nabla f(\mathbf{x}_{HD}; \mathbf{y}_{LD}))$, we choose to minimize

$$\frac{\|\mathbf{D}_{\Theta}(\mathbf{x}_{\mathrm{HD}} - \lambda_{\mathrm{Train}} \nabla f(\mathbf{x}_{\mathrm{HD}}; \mathbf{y}_{\mathrm{LD}})) - \mathbf{x}_{\mathrm{HD}}\|^{2}}{\|\mathbf{x}_{\mathrm{HD}}\|^{2}}; \quad \lambda_{\mathrm{Train}} = \alpha_{\mathrm{Train}} \times \sqrt{\|\mathbf{H}\mathbf{x}_{\mathrm{HD}} + \mathbf{b}\|_{1}}$$

and we want the existence and uniqueness of the fixed point

$$f \iff f + \frac{\zeta}{2} \| \cdot - \mathbf{x}_{\text{EM}} \|^2 \quad (\zeta = 10^{-6})$$

$$\begin{split} & \mathsf{F}\acute{e}\mathsf{j}\mathsf{e}\mathsf{r} \mbox{ monotonicity of } (\mathbf{x}^{n+1}+\mathbf{u}^n) \longrightarrow \beta \max\{|||J_{2\mathsf{D}_{\Theta}-\mathsf{Id}}\left(\tilde{\mathbf{x}}\right)|||+\epsilon-1,0\}^{1+\alpha} \\ & \mathsf{with} \ \tilde{\mathbf{x}} \in B_{\|\mathbf{x}_{\mathrm{EM}}-\mathbf{x}_{\mathrm{in}}\|}(\mathbf{x}_{\mathrm{in}}) \mbox{ given } \mathbf{x}^0 = \mathbf{x}_{\mathrm{EM}} \mbox{ and } \mathbf{u}^0 = 0 \\ & $ \ensuremath{\bigwedge} Only \ \mathbf{D}_{\Theta} \ \text{locally FNE needed} } \end{split}$$

Evaluation with fixed point resolvent

 \rightarrow lowest MSE similar with previous PnP-ADMM with $\mathbf{D}_{\Theta}^{\mathrm{LH}}$ and PnP-FB with $\mathbf{D}_{\Theta,\mathrm{GS}}^{\mathrm{LH}}$ but across a wider range of λ

Evaluation of different FNE architectures

\triangle Jacobian regularization ($\beta \max\{|||J_{2D_{\Theta}-Id}(\tilde{\mathbf{x}})||| + \epsilon - 1, 0\}^{1+\alpha}$) is costly and very sensitive to HP

	Architecture	FNE by design	# params	Approx. time/epoch	# epochs with jac	Runtime
\mathbf{D}_Θ	U-net	No	1 079 000	2h	20	Fast
$\bm{D}_{\Theta}^{\rm SN}$	DnCNN with spectral norm	Yes	167 620	1min	-	Fast
$\bm{D}_{\Theta}^{\rm DU}$	Unfolding	No but close (Pustelnik'23)	59 689	3h	3	$\propto N_{ m layers} = \frac{10}{10}$
$\bm{D}_{\bm{\Theta}}^{\mathrm{DEQ}}$	Deep equilibrium	Yes	18 298	2h	-	$\propto N_{ m iter} = 1000$

 \longrightarrow Evaluation on 50 data replicates from the same phantom (multiscale/ROI-based analysis)

 \longrightarrow SN not competitive

Test on real PET data

 \longrightarrow DEQ (and DU) more robust to out-of-distribution examples

Conclusions

- PnP reconstruction for PET based on ADMM/DR with convergence guarantees and existence of a unique fixed point (available in CASToR -F. Sureau)
- interest of learning a resolvent of a MMO for reconstruction
- constrained network (DEQ, DU) embedding prior knowledge easier training/more robust
- No need for overparameterized operators

Perspectives

- investigate further relationship between optimization and Jacobian regularization
- MRI conditioning of the learned operator
- investigate further the robustness of our approach to data perturbation

- Emilie Chouzenoux et al. "Convergence Results for Primal-Dual Algorithms in the Presence of Adjoint Mismatch". In: SIAM Journal on Imaging Sciences (Jan. 2023). Publisher: Society for Industrial and Applied Mathematics University City, Philadelphia. DOI: 10.1137/22M1490223.
- [2] Regev Cohen et al. "It Has Potential: Gradient-Driven Denoisers for Convergent Solutions to Inverse Problems". In: Advances in Neural Information Processing Systems. Vol. 34. 2021, pp. 18152–18164.
- [3] Minh N. Dao and Hung M. Phan. "Adaptive Douglas-Rachford Splitting Algorithm for the Sum of Two Operators". In: SIAM Journal on Optimization 29.4 (2019), pp. 2697–2724. DOI: 10.1137/18M121160X.
- [4] Alexis Goujon, Sebastian Neumayer, and Michael Unser. "Learning Weakly Convex Regularizers for Convergent Image-Reconstruction Algorithms". In: (2023). Publisher: arXiv Version Number: 1. DOI: 10.48550/ARXIV.2308.10542.
- [5] Samuel Hurault, Arthur Leclaire, and Nicolas Papadakis. Gradient Step Denoiser for convergent Plug-and-Play. 2022. DOI: 10.48550/arXiv.2110.03220.

- [6] Samuel Hurault et al. Convergent Bregman Plug-and-Play Image Restoration for Poisson Inverse Problems. en. June 2023. URL: http://arxiv.org/abs/2306.03466.
- Jean-Christophe Pesquet et al. "Learning Maximally Monotone Operators for Image Recovery". en. In: SIAM Journal on Imaging Sciences 14.3 (Jan. 2021), pp. 1206–1237. DOI: 10.1137/20M1387961.
- [8] M. Savanier, Claude Comtat, and Florent Sureau. "Learning with fixed point condition for convergent PnP PET reconstruction". In: ISBI 2024 - 21st IEEE International Symposium on Biomedical Imaging. Athenes, Greece, May 2024.
- [9] Florent Sureau et al. "Convergent ADMM Plug and Play PET Image Reconstruction". In: Proceedings of the 17th International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine. 2023. DOI: 10.48550/arXiv.2310.16846.