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Deep Learning and medical image reconstruction

• Wide diversity of Deep Learning techniques (DL) to solve inverse
problems with promising experimental results
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• Stable and plausible instabilities (”hallucinations”) observed in
medical image reconstruction with DL (Antun’20, Gottschling’20)

Stable instabilities (Vegard’20)
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Deep Learning for PET reconstruction

• Ill-posed tomographic inverse problem with Poisson data ⇒
Instabilities at low-dose?

Effect of dose reduction (/60) on measured data

• Learning/validating in a typically low data regime in a medical
context (O(10− 100) exams) ⇒ Robustness?

• Large scale tomographic 3D/4D inverse problem (O(107 − 108)
variables) ⇒ Numerical efficiency?

Aim

Develop & validate robust and numerically efficient low-count PET
reconstruction schemes using DL
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Developing robust DL methods

Strategy

• Focus on learning what need to be learned (not the forward model!)

• Focus on supervised learning even though small research databases
(constrained learning, fewer parameters)

• Use tools from statistics, optimization to understand robustness
issues and propose a robust reconstruction method

• Develop validation tools for PET DL reconstructed images?
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Hybrid DL/MBIR methods

Hybrid techniques:

• Reconstruction bricks/layers from convex optimization

• Learned adaptive (implicit) regularization

• More control on the reconstruction (mathematical characterization)

Unfolding Synthesis Plug-and-Play

Learning End-to-end offline offline

Optimisation
with network End-to-end Yes No

Memory load ∝ NunrollNparams ∝ Nparams ∝ Nparams

Convergence Not in practice
(Nunroll)

? Yes
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PET model for reconstruction

Statistical forward model (physics, geometry of scanner, potentially
pharmacodynamics) for quantitative imaging

yit = P

⟨hi , xt⟩+ s̄it + r̄it︸ ︷︷ ︸
b̄it


yit : data in LOR i frame t

hi = [hij ]j∈[1,J]: line i of H

xt ∈ RJ activity for frame t

s̄it : scatter, r̄it : randoms expectations
Applications in:

• Oncology • Neurology • Pharmacology

6 / 24



From MBIR ...

Model-based reconstruction (e.g. ML-EM)

x̂ = argmin
x∈[0,+∞[N

f (x; y,b) + R(x)︸ ︷︷ ︸
C(x)

⇐⇒ 0 ∈ ∂(f + ι[0,+∞[N + R)(x̂)

where f (x; y, b) =
∑M

m=1[y]m log( [y]m
[Hx+b]m

) + [Hx + b]m − [y]m.

Many algorithms TC such that x̂ = TC (x̂, y).

Choice for TC : common reconstruction algorithms are based on

• with smooth priors: Majorization-Minimization with Bregman
majorants (Rossignol’22), Forward-Backward

• with non smooth priors: ADMM/Douglas-Rachford
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... to PnP

regularization

data consistencyx0 data consistency · · · data consistency x∗

PnP iterations

(∀n ∈ N) xn+1 = TC (x
n, ∂R, y) xn+1 = TC (x

n,proxR , y)

(∀n ∈ N) xn+1 = TC (x
n,NN, y)

1 How to choose TC?

2 How to choose NN such that (xn)n∈N converges to some x?

3 Can we characterize x?

4 Can we control to which x the sequence (xn)n∈N converges?
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Two PnP algorithms

Algorithm PnP ADMM (Pesquet’21)

Require: DΘ : RN 7→ [0,+∞[N

for n = 0 to N − 1 do
xn+1 = proxµλf (z

n − un)

zn+1 = proxµR(x
n+1 + un)

zn+1 = DΘ(x
n+1 + un)

un+1 = un + xn+1 − zn+1

end for

When DΘ is the resolvent of a
maximal monotone operator
(MMO) i.e. DΘ is FNE, xn and
zn converge to x
!△provided there exists at

least 1 fixed point

Algorithm PnP FB (Hurault’22)

for n = 0 to N − 1 do
xn+1 = proxτ f (1− τ∇R(xn))
Backtracking on τ given C , xn+1 and xn

xn+1 = proxτ f (
τ
λ
DΘ,GS(x

n) + (1− τ
λ
)xn)

end for

If Id −DΘ,GS = ∇RΘ is
L-Lipschitz, λL > τ > 0

• xn converges to x, such
that for
C = f + ι[0,+∞[N + RΘ/λ,
∂C(x)/∂x = 0

• C(xn) is non-increasing.

!△no uniqueness of stationary

points
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Two PnP algorithms

Algorithm PnP ADMM (Pesquet’21)

Require: DΘ : RN 7→ [0,+∞[N

for n = 0 to N − 1 do
xn+1 = proxµλf (z

n − un)

zn+1 = proxµR(x
n+1 + un)

zn+1 = DΘ(x
n+1 + un)

un+1 = un + xn+1 − zn+1

end for

2DΘ − Id is 1-Lipschitz:
−→ Lipschitz regularization
β max{|||J2DΘ−Id (x̃)||| + ϵ − 1, 0}1+α with

x̃ = κxEM + (1 − κ)xin , κ ∼ U [0, 1]

Algorithm PnP FB (Hurault’22)

for n = 0 to N − 1 do
xn+1 = proxτ f (1− τ∇R(xn))
Backtracking on τ given C , xn+1 and xn

xn+1 = proxτ f (
τ
λ
DΘ,GS(x

n) + (1− τ
λ
)xn)

end for

DΘ,GS = Id −∇RΘ: compose
potential function (e.g.
∥Id − ·∥2) with some NΘ and
compute gradient
(DΘ,GS ̸= NΘ)

DΘ,GS(x)= NΘ(x) + J⊤
NΘ(x)

(x−NΘ(x))
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Learning the prior in PnP

Model agnostic

• Off-the-shelf non deep
denoisers (Heide’14)

• Gaussian deep denoisers as prox
surrogates: Bayesian
interpretation (Meinhardt’17,
Pesquet’21)

• Denoising score matching for
learning ∇R

Model dependent

• In PET: Prox surrogate
mapping low-to-standard dose
images (Sureau’21)

• Adversarial regularization noisy
and ”clean” images (Cohen’21,
Chand’24)
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Training DΘ and DΘ,GS as low- to high-dose denoisers

• Brain simulation [18F]-FDG (Biograph 6 TrueP/TrueV)

• MRI/PET on 14 patients (11 for training)

• PET piecewise constant phantoms (100 anatomical regions)

• Simulations with normalization, attenuation, scatter, randoms,
resolution modeling (4mm)

• Augmentation with dose variations (11 patients x 10 doses)

• References = CASToR reconstructions

• Inputs = CASToR reconstructions with fewer counts (/ 5)

• Differentiable U-net like architectures

When DLH
Θ and DLH

Θ,GS are trained on the same task, winner between
PnP FB and PnP ADMM?
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In principle, CNS on PnP FB lighter but...

−→ Similar images with PnP ADMM and PnP FB
−→ High sensitivity to hyperparameters (oversmooth)
−→ What can be said about the fixed point?
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Characterizing the fixed points

• PnP FB with learned gradient DΘ,GS (for x ∈ int([0,+∞[N))

0 ∈ ∇f (x; y) + (x−DΘ,GS(x))/λ

• PnP ADMM with learned prox surrogate DΘ (for

x ∈ int([0,+∞[N))

x = DΘ(x− λ∇f (x; y)) (FP)

−→ Use (FP) for training DΘ in PnP ADMM
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Characterizing the fixed points

In practice

We want xHD = DΘ(xHD − λTrain∇f (xHD; yLD)), we choose to minimize

∥DΘ(xHD − λTrain∇f (xHD; yLD))− xHD∥2

∥xHD∥2
; λTrain = αTrain×

√
∥HxHD + b∥1

and we want the existence and uniqueness of the fixed point

f ⇐⇒ f +
ζ

2
∥ · −xEM∥2 (ζ = 10−6)

Féjer monotonicity of (xn+1 + un) −→ βmax{|||J2DΘ−Id (x̃)|||+ ϵ− 1, 0}1+α

with x̃ ∈ B∥xEM−xin∥(xin) given x0 = xEM and u0 = 0

!△Only DΘ locally FNE needed
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Evaluation with fixed point resolvent

−→ lowest MSE similar with previous PnP-ADMM with DLH
Θ and

PnP-FB with DLH
Θ,GS but across a wider range of λ
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Evaluation of different FNE architectures

!△Jacobian regularization (βmax{|||J2DΘ−Id (x̃)|||+ ϵ− 1, 0}1+α) is
costly and very sensitive to HP

Architecture FNE by design # params Approx.
time/epoch

# epochs
with jac

Runtime

DΘ U-net No 1 079 000 2h 20 Fast

DSN
Θ DnCNN with

spectral norm
Yes 167 620 1min - Fast

DDU
Θ Unfolding No but close

(Pustelnik’23)
59 689 3h 3 ∝ Nlayers =

10

DDEQ
Θ Deep

equilibrium
Yes 18 298 2h - ∝ Niter =

1000

k = 1..10

xP
k

xD
k

Gradient up-
date with Ck

θ

Gradient up-
date with C̃k

θ

Projection
on [0,+∞[N

Proximity
step using

∥Diag(Λθ′(xEM)) · ∥1

Λθ′xEM

PET Input

Gradient up-
date with Ck

θ

Gradient up-
date with C̃k

θ

Relaxation
step on primal

Relaxation
step on dual

xP
k+1

xD
k+1
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−→ Evaluation on 50 data replicates from the same phantom
(multiscale/ROI-based analysis)

−→ SN not competitive
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−→ Outperforms MBIR and PP + PnP with Gaussian denoiser
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Test on real PET data
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−→ DEQ (and DU) more robust to out-of-distribution examples
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Conclusions

• PnP reconstruction for PET based on ADMM/DR with convergence
guarantees and existence of a unique fixed point (available in CASToR -
F. Sureau)

• interest of learning a resolvent of a MMO for reconstruction

• constrained network (DEQ, DU) embedding prior knowledge easier
training/more robust

• No need for overparameterized operators

Perspectives

• investigate further relationship between optimization and Jacobian
regularization

• MRI conditioning of the learned operator

• investigate further the robustness of our approach to data perturbation
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