

Joint multi-band deconvolution for Euclid and Vera C. Rubin images

Utsav Akhaury

Pascale Jablonka Jean-Luc Starck Frédéric Courbin

16 January 2025

OUTLINE

The deconvolution problem

Single band deconvolution

Joint multi-band deconvolution

European Space Agency

RELEASENCE & EXPLORATION EXPloring the dark Universe

The deconvolution problem

Ground Truth

Observed Noisy Image

The deconvolution problem

Forward Model

$$\mathbf{y} = \mathbf{h} * \mathbf{x}_t + \eta$$

(ill-posed inverse problem)

OUTLINE

The deconvolution problem

Single band deconvolution

Joint multi-band deconvolution

Noise standard deviation $\sigma \in \mathbb{R}$ $\mathbf{\Gamma} \in \mathbb{R}^{n^2 \times n^2}$

 $\lambda \in \mathbb{R}_+$

 $\mathbf{H} \in \mathbb{R}^{n^2 \times n^2}$

- Laplacian high-pass filter Regularization weight
- Block circulant matrix associated with the convolution operator **h**

7

solution

Loss function

output segmentation map

+ conv 3x3. ReLU

copy and crop max nool 2x2 up-conv 2x2 conv 1x1

 $\hat{\mathbf{x}} = (\mathbf{H}^{\mathsf{T}}\mathbf{H} + \lambda \, \boldsymbol{\Gamma}^{\mathsf{T}}\boldsymbol{\Gamma})^{-1} \, \mathbf{H}^{\mathsf{T}}\mathbf{y}$

Solution

input image

+ +

Deep learning-based denoising

• A U-net with Swin Transformer blocks incorporated in the architecture

8

Test on real images from VLT, Chile

- Noisy images: VLT cutouts of 32 × 32 pixels in I-band (768nm) with resolution = 0.2"
- Ground truth: HST cutouts of 128 × 128
 pixels in the *F814W* filter with resolution
 = 0.05"

OUTLINE

The deconvolution problem Single band deconvolution Joint multi-band deconvolution

The multi-band deconvolution problem

$$\mathbf{x}_{euc} = \alpha_r \mathbf{x}_r + \alpha_i \mathbf{x}_i + \alpha_z \mathbf{x}_z$$

Fractional flux contributions

 $\alpha_r, \alpha_i, \alpha_z \in \mathbb{R}^n$

EPFL

The multi-band deconvolution problem

EPFL

The loss functions

$$L_{r}(\mathbf{x}_{r}) = \frac{1}{2} \left\| \frac{\mathbf{h}_{r} * \mathbf{x}_{r} - \mathbf{y}_{r}}{\sigma_{r}} \right\|_{F}^{2} + \lambda_{constr} \left\| \frac{\mathbf{h}_{euc} * \sum_{c} \alpha_{c} \mathbf{x}_{c} - \mathbf{y}_{euc}}{\sigma_{euc}} \right\|_{F}^{2}$$
$$L_{i}(\mathbf{x}_{i}) = \frac{1}{2} \left\| \frac{\mathbf{h}_{i} * \mathbf{x}_{i} - \mathbf{y}_{i}}{\sigma_{i}} \right\|_{F}^{2} + \lambda_{constr} \left\| \frac{\mathbf{h}_{euc} * \sum_{c} \alpha_{c} \mathbf{x}_{c} - \mathbf{y}_{euc}}{\sigma_{euc}} \right\|_{F}^{2}$$
$$L_{z}(\mathbf{x}_{z}) = \frac{1}{2} \left\| \frac{\mathbf{h}_{z} * \mathbf{x}_{z} - \mathbf{y}_{z}}{\sigma_{z}} \right\|_{F}^{2} + \lambda_{constr} \left\| \frac{\mathbf{h}_{euc} * \sum_{c} \alpha_{c} \mathbf{x}_{c} - \mathbf{y}_{euc}}{\sigma_{euc}} \right\|_{F}^{2}$$

where

$$c \in \{r, i, z\}$$

 $\lambda_{constr} \in \mathbb{R}_+$

• Fractional flux contributions

Noisemaps

 $\alpha_r, \alpha_i, \alpha_z \in \mathbb{R}^n$ $\sigma_r, \sigma_i, \sigma_z \in \mathbb{R}^{n \times n}$

Optimization

$$\widehat{\mathbf{x}}_{\{r,i,z\}} = \operatorname*{argmin}_{\mathbf{x}_{\{r,i,z\}}} L_{\{r,i,z\}} (\mathbf{x}_{\{r,i,z\}})$$

Loss Functions iteratively minimized using Gradient Descent

$$\mathbf{x}_{\{r,i,z\}}^{[k+1]} = \mathbf{x}_{\{r,i,z\}}^{[k]} - \beta_{\{r,i,z\}} \nabla L_{\{r,i,z\}} \left(\mathbf{x}_{\{r,i,z\}}^{[k]} \right)$$

Step Sizes

$$\beta_r, \beta_i, \beta_z \in \mathbb{R}^n$$

Gradients of the Loss Functions $\nabla L_r(\mathbf{x}_r) = \frac{\mathbf{h}_r^{\mathsf{T}} * (\mathbf{h}_r * \mathbf{x}_r - \mathbf{y}_r)}{\|\sigma_r\|_F^2} + 2\lambda_{constr} \alpha_r \mathbf{h}_{euc}^{\mathsf{T}} * \left[\frac{\mathbf{h}_{euc} * \sum_c \alpha_c \mathbf{x}_c - \mathbf{y}_{euc}}{\|\sigma_{euc}\|_F^2}\right]$ $\nabla L_i(\mathbf{x}_i) = \frac{\mathbf{h}_i^{\mathsf{T}} * (\mathbf{h}_i * \mathbf{x}_i - \mathbf{y}_i)}{\|\sigma_i\|_F^2} + 2\lambda_{constr} \alpha_i \mathbf{h}_{euc}^{\mathsf{T}} * \left[\frac{\mathbf{h}_{euc} * \sum_c \alpha_c \mathbf{x}_c - \mathbf{y}_{euc}}{\|\sigma_{euc}\|_F^2}\right]$

$$\nabla L_{z}(\mathbf{x}_{z}) = \frac{\mathbf{h}_{z}^{\top} * (\mathbf{h}_{z} * \mathbf{x}_{z} - \mathbf{y}_{z})}{\|\sigma_{z}\|_{F}^{2}} + 2\lambda_{constr}\alpha_{z}\mathbf{h}_{euc}^{\top} * \left[\frac{\mathbf{h}_{euc} * \sum_{c} \alpha_{c}\mathbf{x}_{c} - \mathbf{y}_{euc}}{\|\sigma_{euc}\|_{F}^{2}}\right]$$

Convergence guarantee & Optimal step size

A function's gradient is Lipschitz

continuous if

 $\|\nabla f(\mathbf{x}') - \nabla f(\mathbf{x})\| \le C \|\mathbf{x}' - \mathbf{x}\|$

where *C* is the **Lipschitz constant**

In our case

$$\left\|\nabla L_{\{r,i,z\}}(\mathbf{x}'_{\{r,i,z\}}) - \nabla L_{\{r,i,z\}}(\mathbf{x}_{\{r,i,z\}})\right\| \leq C_{\{r,i,z\}}\left\|\mathbf{x}'_{\{r,i,z\}} - \mathbf{x}_{\{r,i,z\}}\right\|$$

Substituting the individual loss functions, we get

$$C_{\{r,i,z\}} \geq \frac{\mathbf{h}_{\{r,i,z\}}^{\top} * \mathbf{h}_{\{r,i,z\}}}{\left\|\boldsymbol{\sigma}_{\{r,i,z\}}\right\|_{F}^{2}} + \frac{2\lambda_{constr}\alpha_{\{r,i,z\}}^{2}\mathbf{h}_{euc}^{\top} * \mathbf{h}_{euc}}{\left\|\boldsymbol{\sigma}_{euc}\right\|_{F}^{2}}$$

The Optimal Condition for Convergence

$$\beta_{\{r,i,z\}} \leq \frac{1}{C_{\{r,i,z\}}}$$

Hence, we choose

$$\beta_{\{r,i,z\}} = \frac{1}{(1+10^{-5})C_{\{r,i,z\}}}$$

EPFL

Convergence

- Algorithm run for 200 iterations
- Converegence within 50-100 iterations

16

Flux Leakage Test

- Assume 3 separately placed Gaussians in each channel (corresponding to LSST channels)
- The joint image (Euclid) is a linear sum of these channels
- No Flux Leakage from one channel to another

Results

ults	Rubin: <i>r</i> -band	Joint Deconvolution: <i>r</i> -band	HST: <i>F</i> 606 <i>W</i>	Residual: <i>r</i> -band	Sector Sector
Euclid: V/S	Rubin: <i>i-</i> band	Joint Deconvolution: /-band	HST: F775W	Residual: /-band	文化ないた
	Rubin: <i>z-</i> band	Joint Deconvolution: <i>z</i> -band	HST: F850LP	Residual: 2-band	

DRUNet denoising

NMSE	<i>r</i> -band	<i>i</i> -band	z-band
Pre-denoising	0.059	0.041	0.053
Post-denoising	0.058	0.038	0.038
% improvement	1.69%	7.32%	28.3%

Pre-denoising: /-band	Post-denoising with DRUNet
Pre-denoising: /-band	Post-denoising with DRUNet
Pre-denoising: z-band	Post-denoising with DRUNet

Comparison with independent deconvolution

Euclid: VIS

Dubing

1				
	Rubin: <i>i</i> -band	SUNet: /-band	Joint + DRUNet: /-band	HST: F775W
	Rubin: z-band	SUNet: z-band	Joint + DRUNet: <i>z</i> -band	HST: F850LP

DDUN

UCT. EGOG

EPFL

Test on real data

Perseus Cluster

Test on real data

Euclid Images

- Euclid Early Release Observation (ERO)
- Perseus Cluster [ERO-10] <u>https://euclid.esac.esa.int/dr/ero/ERO-Perseus</u>
- VIS Band
- Pixel scale = 0.1"

Name	ERO-Perseus			
DOI	https://doi.org/10.57780/esa-qmocze3			
Data		Image	Catalog	
	VIS	Euclid-VIS-Stack-ERO-Perseus.DR3.tar	Euclid-VIS-Catalog-ERO-Perseus.DR3.tar.gz	
	NISP	Euclid-NISP-Stack-ERO-Perseus.DR3.tar	Euclid-NISP-Catalog-ERO-Perseus.DR3.tar.gz	
Version	V3.0			
Credit guidelines	Please refer to the credits page for instructions on how to acknowledge the use of this data.			
Acknowledgement	Euclid is a fully European mission, built and operated by ESA, with contributions from NASA. The Euclid Consortium is responsible for providing the scientific instruments and scientific data analysis. ESA selected Thales Alenia Space as prime contractor for the construction of the satellite and its Service Module, with Airbus Defence and Space chosen to develop the Payload Module, including the telescope. NASA provided the near-infrared detectors of the NISP instrument. Euclid is a medium-class mission in ESA's Cosmic Vision Programme.			

The Euclid Data Service is managed by the Euclid Science Operations Centre

Test on real data

CFHT Images

- MegaCam wide-field optical imaging facility at CFHT that covers a 1 x 1 square degree FOV
- Region of interest Perseus Cluster (covereing the same portion of the sky as the Euclid ERO FOV)
- Pixel scale = 0.187" (median seeing = 0.7" at Mauna Kea)
- Images rebinned to 0.2" (to obtain an intergral ratio with respect to the Euclid pixel scale of 0.1")
- *r*, *i*, *z* bands

Test on real data

Deconvolved + Denoised: r-band

Deconvolved + Denoised: i-band

Leakage test

Deconvolved + Denoised: r-band

Deconvolved + Denoised: i-band

Leakage test

Deconvolved + Denoised: z-band

Leakage test

Deconvolved + Denoised: i-band

Deconvolved + Denoised: r-band

Deconvolved + Denoised: z-band

Conclusion

Euclid: VIS

Deconvolved + Denoised: i-band

Deconvolved + Denoised: z-band

Thank you

Utsav Akhaury utsav.akhaury@epfl.ch

 École polytechnique fédérale de Lausanne