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Paradigms in ML/DL

Generative models Discriminative models
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Tensor Completion Neural Network

We have created a tensor completion network to recover the missing entries of an image by
converting a model-based method into a neural network using Tucker decomposition and the

algorithmic unrolling technique, without having access to the actual measurements of the missing
entries.
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Algorithmic unrolling

Starting with an abstract iterative algorithm,

® map one iteration (described as the function h parametrized by 6 into a single network layer,
® stack a finite number of layers together to form a deep network.

Feeding the data forward through an L-layer network < executing the iteration L times
The parameters 6 are learned from real datasets by end-to-end optimization.

lterative Algorithm Unrolled Deep Network
Algorithm: Input z°, Output 2"
fori=0,1,..., L—1do Unrolling n e ->—> >0 =] L
2t h(z';6Y, x
end for y :

Monga, Vishal, Yuelong Li, and Yonina C. Eldar. "Algorithm unrolling: Interpretable, efficient deep learning for signal and image
processing." IEEE Signal Processing Magazine 38.2 (2021): 18-44.
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Tensor Completion Neural Network

Deep learning formulation of tensor models:

e Exploit the benefits of both tensor analysis and deep learning techniques

e Create a tensor completion network

e Combine the tensor network with other popular networks

e Perform two tasks simultaneously
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Tensor Decomposition

CANDECOMP/PARAFAC Decomposition Tucker Decomposition
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"Low-rank tensor completion via tucker decompositions’,
Shi, Jiarong, et al., J. Comput. Inf. Syst (2015)
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Lagrange function:
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At each iteration [, we update:

D, = QR(Z, C, ) where Cn =G Xi_y ;4 D;
g — Zl_lxlD 2---><ND,1]\;
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LRTC-Net

Trainable Parameters:
Factor matrices D,,,n = 1,.., N (the same for all layers),
Weights (from convolutional layers)

At each layer [ we update:

g = Zl_lxlD?xg---xND?\}
ANE GX1D1x2- - X NDn + Pa(X)—Pa(Gx1D1xq- -
Z! = CNN(Z2Y) with 4 layers

Loss function = MSE(Pq(X), Po(Z%))
where L is the number of layers.
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Data

 DeepGlobe Land Cover Classification Challenge (2018)

803 RGB satellite images of size 2448 x 2448 x 3 (50cm pixel resolution)
* Mask images for land cover annotation with 7 classes
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Data pre-processing: Resize to 320 x 320 x 3
Data augmentation: Horizontal and vertical flipping, random brightness and contrast
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LRTC-Net Results
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—— Training
—— Validation
Training: 642 images o
Validation: 80 0031
Test: 81 8 ]
50 Epochs °‘°“\
5 layers
lb 2b 3b 4b 50
Epochs
20% 50% 80%
et Missing values | Missing values | Missing values
LRTC-Net 0.05147 0.1208 0.1933
LRTC-Tucker 0.1156 0.2425 0.3966
LRSETD 0.06823 0.1148 0.1652
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Tensor-based Models in the Deep Learning Framework

* Leverage the benefits of both tensor analysis and deep learning techniques

* Analyze high-dimensional data in all dimensions

* Improve the performance of standard models

* Use prior domain knowledge

* Interpretable networks

* Combination of tensor-based networks with other popular networks to perform two tasks simultaneously

¢ Recovery of missing or corrupted measurements in combination with classification problems in multitemporal data
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Tensor/matrix completion in radio astronomy
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The Multimodal Universe:
Enabling Large-Scale Machine Learning with
100 TB of Astronomical Scientific Data

Multi-modal Astronomy

The Multimodal Universe Collaboration

Eirini Angeloudi'?, Jeroen Audenaert’, Micah Bowles*®,
Benjamin M. Boyd®, David Chemaly®, Brian Cherinka’, Ioana C!
Miles Cranmer®® Aaron Do®, Matthew Grayling®, Erin E. Hayes®,

Tom Hehir®® Shirley Ho'!'#1%5, Marc Huertas-Company"%*
Kartheik G. I\.cr“ 119 Maja Jablonska!%? Francois Lanusse!!
Henry W. meg l\.nwv Mandel®, Juan Rafael Martinez-Galarz:

Peter Melchior'®, Lucas Meyer''®, Liam H. Parker'"*!'?, Helen
Joff Shen's, Michael J. Smith?"?, Connor Stone?2%4, Mike Walmsley'®,

Julm F. Wu™#
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— Modality Source Survey N.  Shape “f’:;;}:i;g‘“ J‘ﬁ“;
R — ] Tegacy Surveys DRIO T3] T T60x160  T20M Calaxies
— . Legacy S ﬁ\irwvb North [13, 131 3 152x152  15M Galaxies
. - Images 5,3 5 160x160 477K Galaxies
A ~——’ TS [5 3 63x63 00K Supernovac
= . 31 67 96x96 300K Calaxies
Gaia BP/RP [5 f 110! 220M Stars
. Cross-mate hln 2 SDSS-IT {1] 2] - Variable aM Galaxies, Stars
Spectra DESI [11] o st M Calaxies
APOGEE SDSSI1 [6] I 716k
GALAH [25] © Variable 325k
Chandra [51] - Variable 129K
————————— VIPERS [126] - 557 91K
Hyperspectral Image  MaNGA SDSS IV [2] 1563 96x96 12K .
PLASTICCH[135] 6 Variable  35M  Timevarying objects
TESS [121, 3] 1 Variable 1M Exoplanets, Stars
CIA Sample [68, 69, 15, 70] 511 Variable 1K Supernovac
YSE [1] 6 Varable 2K Supernovac
PS1 SNe Ia [127] 1 Variable 360 Supernovac
Time Series DES V3 SNe Ia [24] 1 Variable 218 Supernovac
SNLS [63] 4 Variable 239 Supernovac
Foundation [53, 81] 4 Variable 180 Supernovac
CSP 8o a [6, 135, 81 9 Variable 134 Supernovae
SNe La[26] 6 Variable 117 Supernovac
c “ain [59] - - 220M Stars
Tabular PROVABGS [65] - - 21K Galaxy
Galaxy10 DECaLS [147, 92] - - 15K Galaxy
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TITAN Datathon

Goal: Attract students of UoC

Who: Academics & Industry partners
Time frame: Spring 2025

Location: FORTH/Crete

Case studies

e Astronomy (Victor)
e Earth Observation (Anastasia)
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TITAN Datathon

TITAN Space Datathon

Welcome to the TITAN Space Data Datathon!

Tris unique eventis anincredible opportundy 1o showcase your skillsin Machine
Leaming, AntificalInteigence, and Data Analysis 5y voriing with resk-wodd

scientits,engineers, researchers, and enthusiasts, the TITAN Datathon challenges

andinnorative solutions.

What's in Store?

1. Diverse Datasets:

Viork

inciucing from

ata from scross the universe.

estimating

missing measurements, and reconstructing unobserved data to gan insights nto
emironmental changes and planetary dynamics.

2.Exciting Challenges:

* Sobvenign- i anomaly detection i
+ I astronomy, focus. 9 complete dat *
+inEartn ke in cbservationsl data

understanding of Earths systems.

3.Team Collaboration:

chrigues.
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Leaderboard System

Submit Your File

Choose File | No fie chosen

Gold Medal
TeamA
MSE: 657.6

Position

« Join foroes with ik minded indhviduals o participate solo, Whether you'e a begines intermediate, or advanced participant, tis event is designed to be:

inclushe, collaborative, and educationa

that push the boundries of scientifc understanding.
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Datathon

Goal: Detection of the effects of extreme events in multi-temporal multispectral
satellite images

Event: Wildfire

After the event Mask

Before the event
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Dataset

20 events in Greece (e.g. wildfires, floods)

Multi-temporal multi-spectral images acquired by Sentinel-2 with cloud cover < 50%

(12 images before the event, 1 image after the event, 12 spectral bands)

* Synthetic Aperture Radar (SAR) images acquired by Sentinel-1 (12+1 days, 2 bands)
(not affected by cloud cover or lack of illumination)

Masks indicating the location of events (1-event, 0-no event)

I . . .
P> TITAN T Signal Processing
1§ B B ll

NS N ASTORnSCS T Rt

e ® & CosmoSTAT CR2

IRl Funded by
LR the European Union

17



Open Science Platform
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Al Analysis

Event ID: EMSR676

Reason: Fire
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Create video(s) for project -> YouTube
Joint publications between ICS and IA

Joint publications with SMEs
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