TITAN updates

- Tensor-based recovery
- TITAN Datathon
- ➤ AOB

Paradigms in ML/DL

Generative models

Discriminative models

Tensor Completion Neural Network

We have created a *tensor completion network* to recover the missing entries of an image by converting a model-based method into a neural network using *Tucker decomposition* and the *algorithmic unrolling* technique, without having access to the actual measurements of the missing entries.

🖌 🌀 Соѕмо Ѕтат

Algorithmic unrolling

Starting with an abstract iterative algorithm,

- map one iteration (described as the function h parametrized by θ into a single network layer,
- stack a finite number of layers together to form a deep network.

Feeding the data forward through an L-layer network \Leftrightarrow executing the iteration L times The parameters θ are learned from real datasets by end-to-end optimization.

Monga, Vishal, Yuelong Li, and Yonina C. Eldar. "Algorithm unrolling: Interpretable, efficient deep learning for signal and image processing." *IEEE Signal Processing Magazine* 38.2 (2021): 18-44.

👖 笒 Соѕм

Tensor Completion Neural Network

Deep learning formulation of tensor models:

- Exploit the benefits of both tensor analysis and deep learning techniques
- Create a tensor completion network
- Combine the tensor network with other popular networks
- Perform two tasks simultaneously

Tensor Decomposition

ΤΙΤΛΝ

RTIFICIAL INTELLIGENCI

$$\mathcal{X} = \sum_{r=1}^{J} \lambda_r \mathbf{a}_r \circ \mathbf{b}_r \circ \mathbf{c}_r$$

$$\mathcal{X} = \mathcal{G} \times_1 \mathbf{A}^{(1)} \times_2 \mathbf{A}^{(2)} \times_3 ... \times_N \mathbf{A}^{(N)}$$

"Low-rank tensor completion via tucker decompositions", Shi, Jiarong, et al., *J. Comput. Inf. Syst* (2015)

$$\min \frac{1}{2} \| \mathcal{G} \times_1 \boldsymbol{D}_1 \times_2 \cdots \times_N \boldsymbol{D}_N - \mathcal{Z} \|_F^2$$

s.t. $\mathcal{P}_{\Omega}(\mathcal{Z}) = \mathcal{P}_{\Omega}(\mathcal{X})$ and $\mathbf{D}_{n}^{T} \cdot \mathbf{D}_{n} = \mathbf{I}_{R_{n}}, n = 1, .., N$

Lagrange function:

$$L(\mathcal{G}, \mathbf{D}_1, ..., \mathbf{D}_N, \mathcal{Z}, \mathcal{Y}) = \frac{1}{2} \|\mathcal{G} \times_1 \mathbf{D}_1 \times_2 \cdots \times_N \mathbf{D}_N - \mathcal{Z}\|_F^2 - \langle \mathcal{Y}, \mathcal{P}_\Omega(\mathcal{Z}) - \mathcal{P}_\Omega(\mathcal{X}) \rangle$$

At each iteration l, we update:

$$D_{n} = QR(Z_{(n)}^{l-1} \cdot C_{n_{(n)}}^{-1}) \text{ where } C_{n} = \mathcal{G} \times_{i=1, i \neq n}^{N} D_{i}$$

$$\mathcal{G} = \mathcal{Z}^{l-1} \times_{1} D_{1}^{T} \times_{2} \cdots \times_{N} D_{N}^{T}$$

$$\mathcal{Z}^{l} = \mathcal{G} \times_{1} D_{1} \times_{2} \cdots \times_{N} D_{N} + P_{\Omega}(\mathcal{X}) - P_{\Omega}(\mathcal{G} \times_{1} D_{1} \times_{2} \cdots \times_{N} D_{N})$$
FORTH IN Signal Processing in COSMOSTAT Constrained by the European Union

LRTC-Net

Trainable Parameters:

Factor matrices $\boldsymbol{D}_n, n = 1, .., N$ (the same for all layers), Weights (from convolutional layers)

At each **layer**
$$l$$
 we update:

$$\mathcal{G} = \mathcal{Z}^{l-1} \times_1 \mathbf{D}_1^T \times_2 \cdots \times_N \mathbf{D}_N^T$$

$$\hat{\mathcal{Z}}^l = \mathcal{G} \times_1 \mathbf{D}_1 \times_2 \cdots \times_N \mathbf{D}_N + \mathcal{P}_{\Omega}(\mathcal{X}) - \mathcal{P}_{\Omega}(\mathcal{G} \times_1 \mathbf{D}_1 \times_2 \cdots \times_N \mathbf{D}_N)$$

$$\mathcal{Z}^l = \operatorname{CNN}(\hat{\mathcal{Z}}^l) \text{ with 4 layers}$$

Loss function = MSE($\mathcal{P}_{\Omega}(\mathcal{X}), \mathcal{P}_{\Omega}(\mathcal{Z}^{L})$) where L is the number of layers.

Data

- DeepGlobe Land Cover Classification Challenge (2018)
- 803 RGB satellite images of size 2448 x 2448 x 3 (50cm pixel resolution)
- Mask images for land cover annotation with 7 classes

Data pre-processing: Resize to 320 x 320 x 3 *Data augmentation*: Horizontal and vertical flipping, random brightness and contrast

LRTC-Net Results

Training: 642 images Validation: 80 Test: 81

50 Epochs 5 layers

NDMCE	20%	50%	80%			
INTIMISE	Missing values	Missing values	Missing values			
LRTC-Net	0.05147	0.1208	0.1933			
LRTC-Tucker	0.1156	0.2425	0.3966			
LRSETD	0.06823	0.1148	0.1652			

🌀 Соѕмо Стат

ħ

Tensor-based Models in the Deep Learning Framework

- Leverage the benefits of both tensor analysis and deep learning techniques
- Analyze high-dimensional data in all dimensions
- Improve the performance of standard models
- Use prior domain knowledge
- Interpretable networks
- Combination of tensor-based networks with other popular networks to perform two tasks simultaneously
 - * Recovery of missing or corrupted measurements in combination with classification problems in multitemporal data

Tensor/matrix completion in radio astronomy

Multi-modal Astronomy

The Multimodal Universe: Enabling Large-Scale Machine Learning with 100 TB of Astronomical Scientific Data

The Multimodal Universe Collaboration

Eirini Angeloudi^{1,2}, Jeroen Audenaert³, Micah Bowles^{4,5}, Benjamin M. Boyd⁶, David Chemaly⁶, Brian Cherinka⁷, Ioana Ciucă^{8,9,10}, Benjamin M. Boyd^a, David Chemaly^a, Brian Cherinka^{*}, Ioana Cluck^{3,5,10}, Miles Cranner^{5,5}, Aaron Do⁶, Matthew Grayling⁶, Erin E. Hayes⁶, Tom Hehir^{6,8} Shirley Ho^{11,12,13,5}, Marc Huertas-Company^{1,2,9}, Kartheik G. Iyer^{14,11,13}, Maja Jahlonsk^{10,9} Francois Lanusse^{11,5,15}, Henry W. Leung⁶, Kaisey Mandel⁶, Juan Rafael Martínez-Galarza^{1,7,18} Peter Melchiol^{1,3}, Lucas Meyer^{1,5}, Liam H. Parker^{11,5,19}, Helen Q²⁰ Jeff Shen³, Michael J. Smith^{21,9}, Comor Stone^{22,25,24}, Mike Walmsley^{1,6}, John F. Wu7,25

¹Instituto de Astrofísica de Canarias ²Universidad de La Laguna ³Massachusetts Institute of Technology ⁴University of Oxford ⁵Polymathic AI ⁶University of Cambridge ⁷Space Telescope Science Institute ⁸Stanford University ⁹UniverseTBD ¹⁰Australian National University ¹¹Flatiron Institute ¹²New York University ¹³Princeton University ¹⁴Columbia University ¹⁵Université Paris-Saclay, Université Paris Cité, CEA, CNRS, AIM ¹⁶University of Toronto ¹⁷Center for Astrophysics, Harvard & Smithsonian ¹⁸AstroAI ¹⁹University of California, Berkeley ²⁰University of Pennsylvania ²¹Aspia Space ²²Université de Montréal ²³Ciela Institute ²⁴Mila ²⁵Johns Hopkins University

Modality	Source Survey	N_c	Shape	Number of samples	Main science
	Legacy Surveys DR10 [43]	4	160×160	124M	Galaxies
	Legacy Surveys North [43, 134]	3	152×152	15M	Galaxies
Images	HSC [5, 3]	5	160×160	477K	Galaxies
	BTS [56, 114, 120]	3	63×63	400K	Supernovae
	JWST[13, 14, 50]	6-7	96×96	300K	Galaxies
	Gaia BP/RP [59]	-	110 ¹	220M	Stars
Spectra	SDSS-II [1]	-	Variable	4M	Galaxies, Stars
	DESI [41]	-	7081	1M	Galaxies
	APOGEÉ SDSS-III [6]	-	7514	716k	Stars
	GALAH [28]	-	Variable	325k	Stars
	Chandra [51]	-	Variable	129K	Galaxies, Stars
	VIPERS [126]	-	557	91K	Galaxies
Hyperspectral Image	MaNGA SDSS-IV [2]	4563	96×96	12k	Galaxies
	PLAsTiCC ² [138]	6	Variable	3.5M	Time-varying objects
	TESS [121, 33]	1	Variable	1M	Exoplanets, Stars
	CfA Sample [68, 69, 18, 70]	5-11	Variable	1K	Supernovae
	YSE [7]	6	Variable	2K	Supernovae
	PS1 SNe Ia [127]	4	Variable	369	Supernovae
Time Series	DES Y3 SNe Ia [24]	- 4	Variable	248	Supernovae
1 ime Series	SNLS [63]	4	Variable	239	Supernovae
	Foundation [53, 81]	4	Variable	180	Supernovae
	CSP SNe Ia [36, 135, 86]	9	Variable	134	Supernovae
	Swift SNe Ia[26]	6	Variable	117	Supernovae
Tabular	Gaia [59]	-	-	220M	Stars
	PROVABGS [65]	-	-	221K	Galaxy
	Galaxy10 DECaLS [147, 92]	-	-	15K	Galaxy

TITAN Datathon

Goal: Attract students of UoC

Who: Academics & Industry partners

Time frame: Spring 2025

Location: FORTH/Crete

Case studies

- Astronomy (Victor)
- Earth Observation (Anastasia)

TITAN Datathon

TITAN Space Datathon Home - Project

Welcome to the TITAN Space Data Datathon!

This unique event is an incredible opportunity to showcase your skills in Machine Learning, Artificial Intelligence, and Data Analysis by working with real-world astrophysical and Earth observation datasets. Designed to bring together data scientists, engineers, researchers, and enthusiasts, the TITAN Datathon challenges participants to solve complex, real-world problems using cutting-edge technologies and innovative solutions.

Datathon Evaluation Form What's in Store?

1. Diverse Datasets:

Registration form

Work with real astrophysical datasets, including time-series data collected from space telescopes, simulations of cosmic phenomena, and fascinating observational data from across the universe.

Earth observation challenges by analyzing environmental patterns, estimating missing measurements, and reconstructing unobserved data to gain insights into environmental changes and planetary dynamics.

2.Exciting Challenges:

- · Solve high-impact problems in predictive modeling, anomaly detection, classification tasks, and advanced data visualization.
- · In astronomy, focus on reconstructing missing or incomplete data and classifying celestial objects using Al-powered models and innovative techniques.

 In Earth observation, leverage machine learning to analyze environmental patterns and address gaps in observational data to advance global understanding of Earth's systems.

3.Team Collaboration:

. Join forces with like-minded individuals or participate solo. Whether you're a beginner, intermediate, or advanced participant, this event is designed to be inclusive, collaborative, and educational.

· Work alongside industry experts, domain professionals, and peers in data science, machine learning, and astrophysics to develop cutting edge solutions that push the boundaries of scientific understanding.

rw Tab		×	🕲 Leaderboa	rd	×	+										-	0	
୯ ଲ	A Not secure	tit	tan-spl.ics.forth.	gr:5999						Q	☆	0	©	0	۲	₽		0
					1	Lea	derboar	d Syst	em									
							Submit Yo	our File										
			Choose File	No file chosen		Enter	your secret key	Submit										
			Leaderboard															
			Gold Me		Aedal Silv		Silver M	Silver Medal	Bronze Medal									
				TeamA		TeamC			roub									
				MSE:	657.6		MSE: 8	47	MSE: 847									
			Position 4			TaamNa		ame	Root MS									
						TeamB			1498									
			5			user			16819.6									

0

Datathon

Goal: Detection of the effects of extreme events in multi-temporal multispectral satellite images

Before the event

ΊΤΛΝ

Signal Processing

the European Union

Mask

Dataset

- 20 events in Greece (e.g. wildfires, floods)
- Multi-temporal multi-spectral images acquired by Sentinel-2 with cloud cover < 50% (12 images before the event, 1 image after the event, 12 spectral bands)
- Synthetic Aperture Radar (SAR) images acquired by Sentinel-1 (12+1 days, 2 bands) (not affected by cloud cover or lack of illumination)
- Masks indicating the location of events (1-event, 0-no event)

Open Science Platform

ToDo

- Create video(s) for project -> YouTube
- Joint publications between ICS and IA
- Joint publications with SMEs

