

Summary

Physical background and Motivations

HI Intensity Mapping and State of the Art

Utility of Higher Order Statistics

 C_{ℓ} vs starlet ℓ 1-norm for Cosmological Parameter Inference

cea

Prospective

FORTH Signal Processing Laboratory

Physical background

- Hydrogen: most abundant element in the Universe.
- After reionization, HI is located inside galaxies.
- \Rightarrow biased tracer of the underlying matter distribution of the Universe.

0

FORTH

D

Signal Processing

Laboratory

1A

Why using 21cm line?

Benefits:

- Can be **measured from earth** (penetrates the atmosphere).
- thermal noise in HI surveys is less important than shot noise in galaxy surveys ⇒ HI analysis is more constraining than galaxies.

Uses:

- Reconstruct DM density fields.
- Map 3D Large Scale Structures of the Universe.
- Complementary measurement to optical surveys to constrain cosmological parameters.

Signal Processing

🚹 🌀 CosmoStat

What is Intensity Mapping?

- Measurement of redshift and intensity of HI over the whole sky.
- Treats HI signal as a diffuse background.
- Large cosmological volume.
- Less costly, less time consuming.
- High spectral resolution \Rightarrow high redshift resolution.
- Individual galaxy detection not needed for LSS study.

Intensity map

FORTH Signal Processing

cea

State of the Art for HI IM

- For now detection by cross-correlation between galaxy and 21 cm.
- Not yet possible to obtain a measurement of the 21cm auto-Power Spectrum.

Measurements scheme

Credits: :Marta Spinelli

From observations to cosmological information

Limitations of the power spectrum

Gaussian Assumption:

• The power spectrum is most effective for Gaussian random fields.

• Non-Gaussian Features:

• The universe exhibits non-Gaussian features due to non-linear growth of structures and primordial non-Gaussianities.

Loss of Information:

- Higher order interactions and complex structures are not captured by the power spectrum.
- Important information about the morphology and connectivity of cosmic structures is lost.

🚹 🌑 CosmoStat 📿 🗠

Make use of Higher order statistics which are sensitive to the non-Gausianities.

FORTH

Signal Processing

GLASS for HI IM simulations

ℓ1-norm

Preliminary tests of the chi square with GLASS square maps

• For the Hubble parameter

Preliminary tests of the chi square with GLASS square maps

- For the Ω_m

MCMC for Hubble parameter h

No burn in removed

True value h=0.7

Constraining power of the I1-norm VS APS

Constrains improved by a factor 5

Next steps

- Constrain more parameter As, σ_8..
- Use N-body simulations instead of lognormal.