MC & Tools,

Resummation and

Jets WG Summary

PhysTeV 2025 SM Session

Silvia Ferrario Ravasio, Daniel Reichelt, Andrzej Siormok

Jet Flavour Labels & JSS

- Continued discussion from LH 23
 - Train taggers with labels from safe algorithms See Alexander's talk Requirements of EXP and TH for
 - determining $g \rightarrow bb$ backgrounds
 - <u>several project ideas</u> collected

0.2

- From MC perspective: need control over mass effects in PS and $g \rightarrow bb/c\bar{c}$ especially
- Study stability of taggers under model variations
- Several ideas for JSS studies (JSS in ee, Variable) <u>Radius Jets</u>, Subjet flavor studies) in various early stages

PS Uncertainties

- LH23 disucssion: replace Event Generator variation by more systematic variation of components
- Example: Herwig AO with cluster vs. lund hadronisation, Herwig vs.
 Pythia showers
- LH Update: Additional datapoints from Sherpa CS (current default) and Alaric with string hadronisation, Pythia default shower vs. Vincia

Inclusive jet multiplicity

N_{jet}) [pb]

Ra

0.8

0.6

PS Uncertainties in Higgs+Jets

- Recurring topic in Les Houches
 - Last year started efforts for VBF matching+shower uncertainties, and **ggF** study including NNLO and NLO merging
 - Next step: Systematics with new showers (Alaric, Apollo, PanScales, ... others?)
 - not all pieces together yet in any of the frameworks, but can start for example Higgs+jet merged/ME corrected study
 - opportunity to think about regions where different parts of the simulation are important

arXiv:2105.11399

⁴⁰⁰ р_{т, н} [GeV]

Negative weight suppression

Les Houches updates:

 Rivet analysis written to study negative weights in even samples MC WEIGHTS → LH WEIGHTS

Example:

d|w|/dw on the other hand illustrates the problem better.

MC_WEIGHTS modified to have several such histograms with varying x-axis. Variance reduction when using cres clear.

•HERWIG NLO correlated event sample for WJJ used for testing (J. Whitehead)

Negative weight suppression

Les Houches updates:

Rivet analysis written to study negative weights in even samples

Example:

- HERWIG NLO correlated event sample for WJJ used for testing (J. Whitehead)
- CRES: Distributions statistically equivalent
- Statistical tests, e.g. two-sample Kolmogorov-Smirnov pT

MC WEIGHTS → LH WEIGHTS

Negative weight suppression

Rivet analysis written to study negative weights in even samples MC WEIGHTS → LH WEIGHTS Plan to apply it on ATLAS MC sample to create new "whish list" **Aside** | Negative event weights

Any development here would be much appreciated...

We cannot afford to run full simulation on samples with negative weight fraction >25%

Starting to become a deal-breaker

Also has knock-on effects

For e.g. huge W/Z samples for high precision analyses we cannot currently use MC@NLO-like matching schemes.

Reduction of negative weights in Matching PS + NLO • ESME, Powheg, KrkNLO, ...

Sample	DSID	Fraction of events with neg. weights [%]
Sherpa (lepton+jets)	364345	20.5
Sherpa (lepton+jets)	364346	20.4
Sherpa (dilepton)	364347	20.4
Sherpa ttbb (lepton+jets, CSSKIN, 4FS)	410329	24.4
Sherpa tibb (lepton+jets, CMMPS, 4FS)	410335	25.7
aMC@NLO+Py8 (lepton+jets)	410441	23.7
aMC@NLO+Py8 (dilepton)	410442	23.7
aMC@NLO+Py8 (FxFx, 70 GeV)	410452	28.4
aMC@NLO+H++ (4FS, ttbb)	410245	37.2
Powheg+Herwig7 (Tepton+jets)	410557	0.4
Powheg+Herwig7 (dilepton)	410558	0.4

Josh McFayden | MCnet | 11/4/2018

Non-perturbative physics modeling in Monte Carlo event generators

- parton shower, hadronisation models, and observables

Angular-ordered (Herwig7, NLL) Catani-Seymour dipole (Herwig7, Sherpa3, LL) PanLocal dipole (PanScales, NLL) PanGlobal antenna (PanScales, NLL) Alaric dipole (Sherpa, NLL)

Idea: scrutinise hadronisation models using analytic insights and not data

Sarmah, G. Víta,

your name???

Cutoff dependence

- > Warmup: **cutoff** dependence on the distributions. showers have a $p_{\perp,\min}$ cut to terminate the perturbative evolution.
- ► For 1- Thrust and C-Parameter:

 $\Sigma_{\rm PS}(v; p_{\perp, \min}, \sqrt{s}) - \Sigma_{\rm PS}(v; p'_{\perp, \min}, \sqrt{s})$

The renormalisation scales of parton showers is the p_{\perp} of the emission: hence, all

$$) = \frac{d\Sigma}{dv} \frac{1}{\sqrt{s}} \int_{p'_{\perp,\min}}^{p_{\perp,\min}} d\mu \frac{2C_F}{\pi} \alpha_s(\mu) \Delta_{v,\text{soft}}$$

Cutoff dependence for the C-parameter: Sherpa

Alaric shower, C for $Q = 200 \,\text{GeV}$

CSS shower, C for Q = 200 GeV

10

Cutoff dependence for the C-parameter: PanScales

pl05 nndl shower, C for $Q = 200 \,\text{GeV}$ *PanGlobal* shower, *C* for $Q = 200 \,\text{GeV}$

Solid line: PLB 339 (1994)148-150

Dash-dotted: JHEP12(2022)062

11

Cutoff dependence

> Warmup: **cutoff** dependence on the distributions. showers have a $p_{\perp,\min}$ cut to terminate the perturbative evolution.

$$\frac{d\sigma}{dz} = \int \frac{d\sigma}{d\Phi} d\Phi \sum_{i,j} \frac{2E_i E_j}{s} \delta\left(z - \frac{1 - \cos \alpha}{2}\right)$$

The renormalisation scales of parton showers is the p_{\perp} of the emission: hence, all

Cutoff dependence for the EEC

Hadronisation Corrections

• Evaluate EECs and Lund Plane in clean $e^+e^- \rightarrow jets$ environment

Ratio py_astune0_sigma0.2-hadron-level/pythia default

Lund Plane and EEC, thanks Melissa for the plots!

1.20 **├** 1.15 F 1.10 F 1.05 - 1.00 - 0.95 F 0.90 - 0.85 0.80

14

Next Steps and Ideas...

- Study cutoff dependence of corresponding hadronisation models and consistency
- Study Transfer Matrices and their dependence

$$\mathcal{T}(\vec{v}_h | \vec{v}_p) = \frac{\int d\mathcal{P} \, \frac{d\sigma}{d\mathcal{P}} \delta^{(m)} \left(\vec{v}_p - \vec{V} \left(\mathcal{P} \right) \right) \delta^{(n)} \left(\int d\mathcal{P} \, \frac{d\sigma}{d\mathcal{P}} \delta^{(m)} \left(\vec{v}_p - \vec{V} \right) \right)}{\int d\mathcal{P} \, \frac{d\sigma}{d\mathcal{P}} \delta^{(m)} \left(\vec{v}_p - \vec{V} \right)}$$

 Hadronisation differences between models / tunes in EECs and Lund plane / effect of higher log showers

