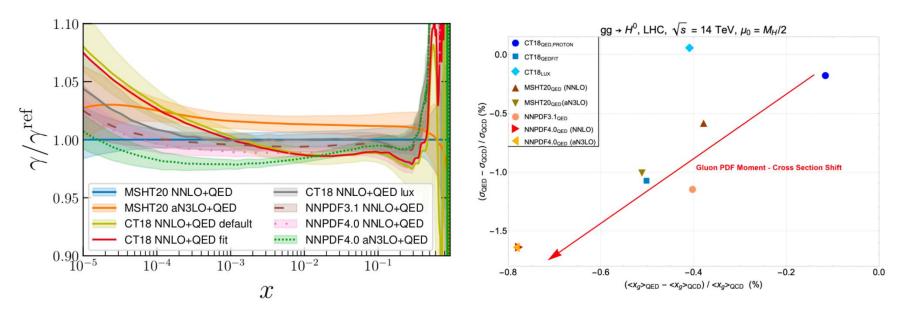
PhysTev 2025

Experimental summary (I) Ulla Blumenschein, QMUL

- QED corrections to PDF
- PDF profiling in Drell-Yan precision measurements
- Theory and PDF uncertainties for $\sin^2\theta_W$
- α_s from ZpT: ATLAS measurement and TNP study
- Flavor labelling (resolved jets)



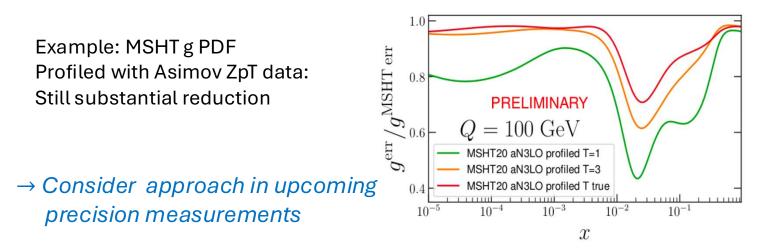
QED corrections to PDF

- Photon PDFs consistent between MSHT, CT & NNPDF (fits @ NNLO QCD)
 - $<x>_{\gamma}$ in agreement (e.g. 0.43% @ Q=125GeV)
- Net momenta of other partons reduced to accommodate photon
 - Example: Reduction in gluon leads to ~1% decrease in ggH production
 - Larger (-2%) NNPDF shift partially explained by updated QCD grids and additional datasets used inNNPDF4.0 wrt. 3.1
 - Approximate factorisation of QED & QCD (slight increase aN3LO vs NNLO)

 \rightarrow ongoing calculation to fully understand difference in ggH cross section

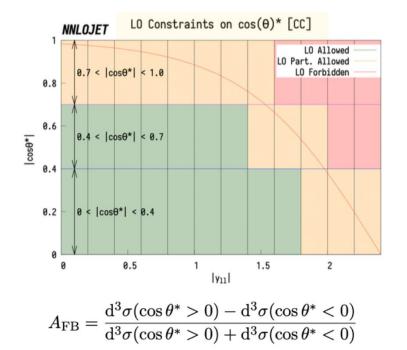
PDF profiling in Drell-Yan precision measurements

Precise Drell-Yan data can be used to profile PDF uncertainties together with the extraction of precision measurements of SM parameters (α_s , sin² θ_W , m_W...)


Conditions:

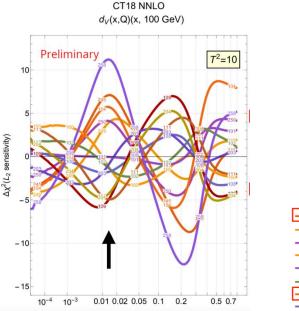
- PDFs not altered significantly (central value, uncertainties)
- PDF uncertainties from previous data consistently included

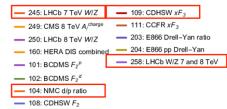
MSHT and CT use tolerance T_k for EV k: $\Delta \chi_k^2 = Tk^2 \rightarrow 2$ -step approach:


(1) Profile PDFs including factors of $T_k \rightarrow \text{obtain consistently profiled PDFs.}$ $\cdot \chi^2_{total} = \chi^2_{newdata} + \chi^2_{PDF}$, with $\chi^2_{PDF} = \sum_k T_k^2 (\Theta_k^{PDF})^2$

(2) Perform fit with $\Delta \chi^2 = 1$ and obtain PDF uncertainty by scanning profiled PDFs

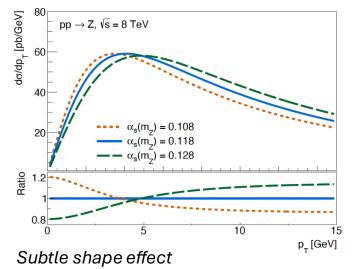
Theory and PDF uncertainties for $\sin^2\theta_{ m W}$


Extraction of $\sin^2\Theta_W$ builds on 3D DY measurement: M_{ii} , y_{ll} , $\cos \theta^*$ Green region: normalize xsec, yellow region: AFB $\rightarrow \sin^2\Theta_W$

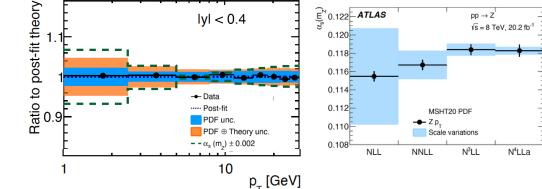

→ Only use numerator for $sin^2 \Theta_W$ extraction? Easier to calculate theory calculations (TNP).

Largest systematic from PDF

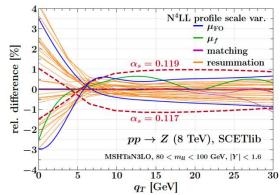
- Profiling? \rightarrow 2-step approach?
- Combined fit of $\sin^2 \Theta_W$ and PDF \rightarrow sensitivity to $x(d_v)$ at 0.01


L2 sensitivity for d_v example: CT18

\rightarrow can we constrain d_v further? Additional data?

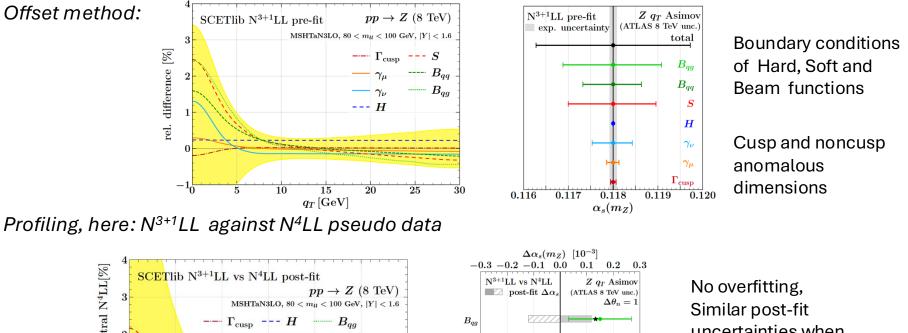

α_s from ZpT: ATLAS measurement

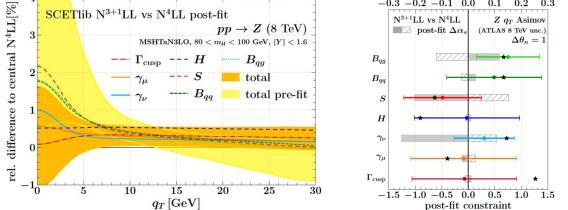
From the low-momentum Sudakov region of ZpT measured in 8 rapidity bins (Ai) N⁴LLa + N3LO theory with aN³L0 MSHT20 PDF, profiled. Missing higher orders:



variation of μ_f , μ_r and Q (offset method).

 $\alpha_{\rm s} \, (mZ) = 0.1183 \pm 0.0009$

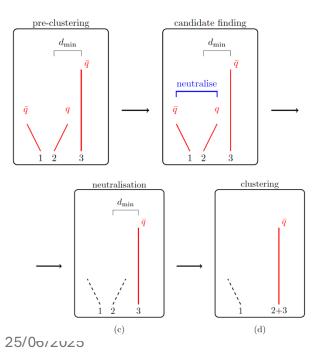

- Validation of PDF uncertainties, e.g. profiling vs fit, tolerance
- Missing higher orders in parameter fits:
 - Fit unc. depends on pT shape (\leftrightarrow correlations) from higher-order uncertainties vs pT shape from α_s variation.
 - Scale variation yield no meaningful pT shape variations
- Variations of very low scales transferred to variation of high scales

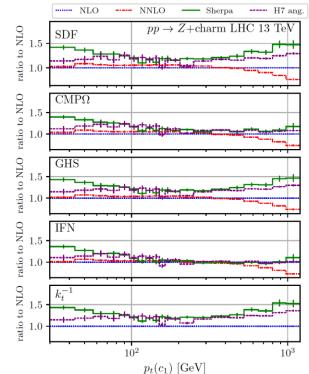


 \rightarrow comparisons between ATLAS/DYTurbo and Frank/SCETlib for benchmark setups

α_s from ZpT: TNP study

TNP Asimov test of TNP approach for α_s extraction from ZpT (https://arxiv.org/html/2506.13874v1) TNP for qt resummation at $N^{3+1}LL$ level, $N^{3+1}LL$ or N4LL pseudo data (SCETlib)


No overfitting, Similar post-fit uncertainties when fitting various orders wrt N4LL or when relaxing the pre-fit constraints

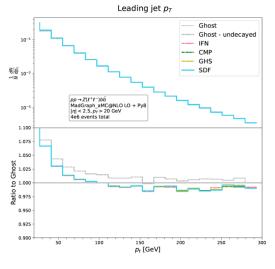

→ Consider approach in upcoming precision measurements: develop TNP wish list

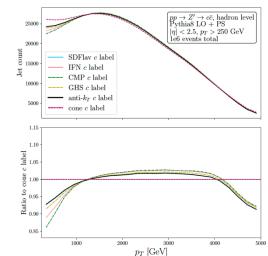
Flavor labelling for resolved jets

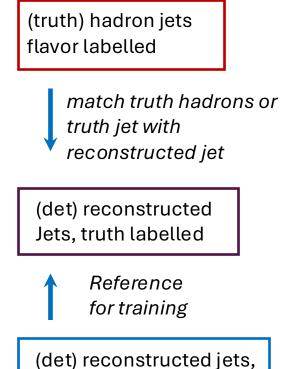
For NNLO calculations, need IRC safe jet flavor labels (particularly wrt $g \rightarrow bb/cc$) At Les Houches 2023: compared 4 IRC safe flavor labelling approaches: Soft Drop Flavour (SDF), Flavoured AntikT (CMP), Flavour Dressing (GHS), Interleaved Flavour Neutralisation (IFN)

Performance study in various processes and phase space regions (<u>https://arxiv.org/abs/2506.13449</u>): *IFN: "stands out for its robustness against soft and collinear effects, delivering distributions that change little through the simulation chain"*

- → Experiments will probably start with one of the approaches (disc space/CPU/ person power for flavor tagging)
 → Ask for NNLO theory productions with same labelling.
- → Ask for NNLO theory productions with same labelling: W/Z+b(b), W/Z+c(c),


Flavor labelling for resolved jets


Performance study (https://arxiv.org/abs/2506.13449):


- Traditional cone/ghost reco jet labelling not compatible with IRC safe algorithms
- \rightarrow Steps forward:

(1) Keep recojet truth labelling and unfold between incompatible definitions (short-term)
(2) Harmonize recojet labelling, e.g. via ΔR matching with correctly labelled hadron jet

(3) Update (ML) reco jet tagging with new reference (long-term)

flavor tagged (ML)