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pp → t t̄ + X production

pp → t t̄ + X production relevant for testing pQCD, PDF fits, top-quark mass fits,
background for various SM and BSM processes at the LHC, BSM searches, etc...

copiously produced at the LHC: good statistics available requires precise theory predictions.

fixed-order predictions at NLO known since long.

fixed-order predictions at NNLO QCD computed by two different IR-divergence subtraction
methods, founding consistency.

NLO+PS and NNLO+PS also available, as well as predictions including threshold
resummation, top-quark decays, etc. (not considered in the following of this presentation,
where we limit ourselves to predictions with stable top quarks at fixed order).

Garzelli, Moch, Zenaiev et al. Reducing negative weights in pp → t t̄ + X at NNLO 2 / 19



CMS TOP-20-001 vs NNLO predictions using different PDFs
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Fixed mpole
t = 172.5 GeV, µr = µf = HT /4

Reported χ2 values with (and without) PDF uncertainties
All PDF sets describe data reasonably well, with best description by ABMP16

I CT18, MSHT20 and NNPDF40 show clear trend w.r.t data at high y(t t̄) (large x)
This is most precise currently available dataset with finest bins
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CMS TOP-20-001 vs NNLO predictions with ABMP16 and different mpole
t
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Using ABMP16, µr = µf = HT /4
Reported χ2 values with PDF uncertainties

Large sensitivity to mpole
t in the first M(t t̄) bin (and even in other M(t t̄) bins, thanks to

cross-section normalisation)
Fluctuations of theory predictions are . 1%
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How to speed-up the production of predictions for this process ?

NNLO computations with MATRIX are CPU intensive....

For reaching an accuracy ∆σt t̄ = 0.02% on total cross sections:
≈ 350000 CPU hours/run (∼30 years on a single CPU)

for differential distributions, this corresponds to a statistical uncertainty in bins . 0.5%

To save CPU consumption:
generation of PineAPPL (or FastNLO, etc...) interpolation grids, with the possibility of
changing a-posteriori PDFs, αs , multiples of the µr , µf scales without re-running from
scratch, and publications of these grids (e.g. via Ploughshare).

MATRIX as an “event + counterevents”/ntuples generator

Reduction of the number of negative weights in the ntuple samples
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t t̄ @ NNLO in MATRIX

qT -subtraction:

MATRIX run structure:
∗ the number of events in
different channels is chosen
to optimise the total
uncertainty: balance of
cross section magnitude
and runtime
∗ in many channels,
’event+counterevents’

order contr. channel σ [pb] time [s] events ms/event counterevents

LO born dd˜_tt˜ 73.9 ± 0.2 19 234748 0.08 1
gg_tt˜ 456.5 ± 0.4 125 1483164 0.08 1

NLO

CA dd˜_tt˜ 20.8 ± 0.1 13 89374 0.14 6
gg_tt˜ 319.3 ± 0.4 275 1834780 0.15 6

RA

dd˜_tt˜g 2.4 ± 0.0 20 49998 0.40 13
gd_tt˜d −20.2 ± 0.1 39 122419 0.32 7
gd˜_tt˜d˜ −3.5 ± 0.0 16 49999 0.32 7
gg_tt˜g −20.5 ± 0.2 66 131387 0.50 13

VA dd˜_tt˜ −24.6 ± 0.1 70 50000 1.40 1
gg_tt˜ −88.0 ± 0.4 130 57892 2.24 1

NNLO

CT2 dd˜_tt˜ 205.3 ± 0.6 500 225198 2.22 13
gg_tt˜ 6675.6 ± 4.3 19150 4316824 4.44 9

RCA

dd˜_tt˜g 41.4 ± 0.2 74 367542 0.20 6
gd_tt˜d 133.1 ± 0.3 189 857314 0.22 6
gd˜_tt˜d˜ 32.9 ± 0.1 45 203916 0.22 6
gg_tt˜g 2032.7 ± 1.3 3275 14423630 0.23 6

RRA

dd_tt˜dd −27.9 ± 0.3 118 131068 0.90 1–17
dd˜_tt˜dd˜ −11.4 ± 0.2 56 68013 0.82 1–13
dd˜_tt˜gg −128.8 ± 0.7 1158 815758 1.42 1–37
dd˜_tt˜uu˜ −10.6 ± 0.1 24 66735 0.36 1–5
du_tt˜du −34.1 ± 0.2 126 217950 0.58 1–9
du˜_tt˜du˜ −22.7 ± 0.2 78 129277 0.60 1–9
d˜d˜_tt˜d˜d˜ −0.8 ± 0.0 45 49996 0.90 1–17
d˜u˜_tt˜d˜u˜ −2.2 ± 0.0 29 49997 0.58 1–9
gd_tt˜gd −1793.9 ± 2.0 10374 6924587 1.50 1–29
gd˜_tt˜gd˜ −382.1 ± 1.0 1848 1248710 1.48 1–29
gg_tt˜dd˜ −312.2 ± 0.8 1195 933749 1.28 1–21
gg_tt˜gg −5926.6 ± 5.4 54688 18892527 2.89 1–37

RVA

dd˜_tt˜g −49.3 ± 0.4 420 81682 5.14 1
gd_tt˜d 236.1 ± 1.0 2183 419884 5.20 1
gd˜_tt˜d˜ 44.5 ± 0.4 400 76878 5.20 1
gg_tt˜g −705.0 ± 2.9 39974 1264466 31.61 1

VT2 dd˜_tt˜ 5.2 ± 0.2 672 50000 13.44 13
gg_tt˜ 51.2 ± 1.1 2664 104476 25.50 9

total 766.5 ± 8.2 140056 56023938 981854334
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t t̄ @ NNLO in MATRIX: summary
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σ(t t̄) = 767 pb, while RRA and CT2 contributions ∼ ±6000 pb: large unc. on the sum
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Applying cell resampling on top of t t̄ events + counterevents

Cell resampling redistributes the weights within a cell centered around a negative weight
event and containing events and counterevents with both positive and negative weights, in
such a way to decrease/minimize(?) the number of negative weights, preserving the total
weight in the cell. See [arXiv:2109.07851] and [arXiv:2303.15246] for more info.

A cell includes a number of neighbor events: key aspect is the definition of distance among
events and its calculation.

Various parameters affect the result, here we run with anti-kt jet-algorithm, with R=0.5 and
pt(jet)=50 GeV, and we consider in particular the effect of the variation of the maximum cell
size (mcs) parameter and the minimum weight (minw) parameter, which allows to put to 0
the weight of a number of events, reducing the size of the event sample
(minw = weight after weight redistribution, below which the corresponding event is
discarded with probability=(1-|w|)/minweight)

⇒We study the resulting maximal and average distorsion of various NLO and NNLO
distributions, the CPU-time consumption, the memory consumption, and the reduction of file
size.

reduction of file size = file size after cell resampling / file size before it

distorsion definition = |σafter cellΩresampling - σMATRIX| / numerical uncertaintyMATRIX

distorsion evaluated for the CMS TOP-20-001 differential distributions
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Effects of variations of maximum cell size and minimun weight
parameters on NLO samples

Different tables correspond to NLO cross-section accuracy of ∼ 0.5%, 0.1%,
0.06%, respectively.

Our biggest NLO sample includes 6.5 107 events + counterevents (1.5 GB).

CPU time increases with incresing mcs, memory consumption does not.
Reduction of file size is more pronounced for large minw accompanied by
large mcs. Distorsion increases with increasing mcs and increasing minw.
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Effects of variations of maximum cell size and minimun weight
parameters on NNLO samples

Different tables correspond to NNLO cross-section accuracy of 5% and 1%,
respectively.

Our biggest NLO sample includes 109 events + counterevents (40 GB).

The sequence of 0’s correspond to jobs that never finished...

Here reduction of file size and distorsion at fixed minw are not always
increasing for larger mcs.
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pT ,t and pT ,̄t differential distributions at NLO
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∗ Differences in the pT ,t and pT ,̄t distributions seem to be reduced by cell
resampling.

∗ Cell resampling with default metrics definition performs better at large pT .
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yt and yt̄ differential distributions at NLO
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∗ Cell resampling does not seem to perform equally well on yt and yt̄ ,
but the distributions before it have already a different numerical accuracy.
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yt t̄ and mt t̄ differential distributions at NLO
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∗ Maximal distorsion of ∼ 1.5 - 2% on both distributions.
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pT ,t t̄ differential distribution at NLO
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∗ It should not be modified by cell resampling: good cross-check.
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pT ,t and pT ,̄t differential distributions at NNLO
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∗ Similar observations as for NLO.
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yt and yt̄ differential distributions at NNLO
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∗ Similar observations as for NLO.
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yt t̄ and mt t̄ differential distributions at NNLO
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∗ Distorsions at the level of ∼ 1%− 2% for both distributions.
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pT ,t t̄ differential distribution at NNLO
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∗ Here there is distorsion at large pT .
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Conclusions

Cell resampling can be used to reduce the size of the ntuples to 30-60% without significant
distortion of kinematic distributions.

I However, assigning numerical uncertainties to distributions after cell resampling is still
an open issue....

So far, we could NOT reach a < 1% total uncertainty at NNLO due to the high memory
consumption (> 1 TB). How can we apply scaling to huge samples ?

Values of the parameters mcs and minw have to be adjusted depending on the total
uncertainty and perturbative order, this might require time-consuming iterations

I for 1% NNLO accuracy we find that mcs = 1 and minw = 0.01 are a good compromise
and we used them for the plots of differential cross sections

I some distributions are reproduced much better than others. This depends on the
order, the metrics definition, the numerical uncertainty of the initial simulation....
How can we better fix the parameters for cell resampling and the metrics ?
In principle we should be able to reproduce any distribution with a desired accuracy.

Variation of other parameters/use of different distance definition in our case-study still to be
investigated....

Thank you for your attention and your suggestions are welcome!
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