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Setup.

We perform Asimov fits to (unfluctuated) pseudodata
Standard method to study expected uncertainties in a controlled setting
I Unobscured by statistical fluctuations and subleading effects

Goals: Demonstrate TNPs and estimate expected uncertainties in αs(mZ)
I Can consistently drop subleading effects in both pseudodata and theory

model (power corrections, quark mass effects, EW corrections)
I They are needed to fit the real data, but are irrelevant for estimating the

dominant uncertainties

Here, I will mostly focus on scale variation results and our resulting
concerns about ATLAS αs(mZ) determination [arXiv:2309.12986]

Pseudodata
Central value given by central SCETlib prediction with αs(mZ) = 0.118

Exp. uncertainties and correlations from ATLAS 8 TeV inclusive Z pT
measurement [Eur. Phys. J. C 84 (2024) 315 [arXiv: 2309.09318]]

Same bins and cuts as used by ATLAS
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Overview.

Uncertainties of perturbative origin
Absolute uncertainty on αs(mZ) in units of 10−3

Perturbative uncertainty ATLAS our estimate of expected size

Scale variations ±0.42 ±2.43

N4LL′ approximation ±0.04 ±0.75

Flavor/quark masses +0.40 −0.29 ±1.32

Total +0.58 −0.51 ±2.87

Other uncertainties of concern
Parameterization of nonperturbative effects at small qT
I Nonpert. model does not reproduce correct nonperturbative OPE

PDF uncertainties from PDF profiling
I Profiling PDFs consistent with global PDF fit (accounting for tolerances)

yields up to 2× larger PDF uncertainty on αs(mZ)

I See discussion of PDF profiling for sin2θW later today
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Scale Variations and Correlations.

Recall
Scales are unphysical

Higher-order effects induced by scale variations do not provide a correct
parameterization of missing higher-order terms

⇒ Scale variations do not provide correct theory correlations

For differential spectrum
Best we can hope for is a reasonable overall uncertainty band from
envelope of various (types of) scale variations
Theory uncertainty on the shape of the spectrum is encoded by
point-by-point theory correlations
I Scale variations are particularly bad for estimating shape uncertainties

⇒ Scale variations are insufficient to correctly propagate uncertainty from
spectrum to parameter of interest when one is sensitive to shape effects
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Scanning over Scale Variations.

ρ12 ρ13 ρ23

a 0 −1 0

b +1 +1 +1

c +1 −1 −1

Repeat fit for each individual scale variation and take envelope of results
Amounts to trying out various correlation models for the same total
uncertainty band
I None of the trial variations provides a realistic correlation model
I Individual variations are not meaningful (which is why we take their envelope)

Best we can do with scale variations
I Perform as many variations as we can to “fill out” the band, hoping to include

at least one that happens to give sufficiently conservative estimate
I And/or identify conceptually “independent” subsets of variations and add

their envelopes
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Scanning over Scale Variations.
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O(1%) spectrum uncertainty should give O(1%) uncertainty on αs

Dominant αs(mZ) sensitivity at small qT ≡ pZT is a shape effect
(shifting the peak of the spectrum)

I Whether a 1% spectrum variation yields a 0.5% or 2% variation in αs(mZ)
entirely depends on shape of variation

I In other words, point-by-point theory correlations are critically important to
propagate theory uncertainty from spectrum to αs(mZ)
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Scanning over Scale Variations.
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Scanning over SCETlib scale variations at N4LL
Highest known (essentially) complete order

sum of envelopes: ∆pert =
√

∆2
FO+∆2

f +∆2
resum+∆2

match = 2.43 × 10−3

total envelope: ∆pert = 1.73 × 10−3

⇒ For similar-size scale-variations in the spectrum (as best we can tell)
we find up to 5× larger αs(mZ) variations
I Scanning over TNPs confirms that these are more realistic estimates
I Clear indication that scale variations cannot be relied on
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Quark Mass Effects.

ATLAS uses a 5-flavor massless description – appropriate for mb � qT

For qT ∼ mb, i.e., right in the peak region of the spectrum, finite mb

causes nontrivial O(%) effects

Correct description of bottom threshold requires correct treatment of mb

effects
I Switching from massless 5-flavor to massless 4-flavor description is not

enough since neither is correct for qT ∼ mb

Implemented a full treatment of mb effects at NNLL′ in SCETlib
I All primary and secondary mass effects in beam & soft functions and

Collins-Soper kernel

We can estimate impact of missing mass effects by including them in the
pseudodata and fitting with a massless 5-flavor theory model

⇒ Yields a bias in αs(mZ) of 1.32× 10−3
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N4LL′ Approximation.

“N4LLa” from [Phys. Lett. B 845 (2023) 138125 [arXiv:2303.12781]] used as highest
order by ATLAS corresponds to an approximate N4LL′

I Compared to corresponding previous order (N3LL′), the most important
contributions are missing, namely 4-loop beam and soft functions

I It is therefore a largely incomplete order, so associated approximation
uncertainty should be roughly of comparable size as uncertainty at previous
order

We can estimate expected impact of missing 4-loop beam and soft
functions from their associated TNP variations at N4+0LL

⇒ Yields an uncertainty on αs(mZ) of ±0.75× 10−3

I Consistent with expectation and previous order uncertainties
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Nonperturbative Effects.

For perturbative 1/bT ∼ qT � ΛQCD nonperturbative effects can be
systematically expanded in an OPE

f̃i(x, bT , µ,Q) = f̃
(0)
i (x, bT , µ,Q)

×
{

1 + b2T

[
Λ2,i(x) + λζ2 ln

bTQ

b0

]
+O(Λ4

QCDb
4
T )

}

Nonpert. model used by ATLAS does not correctly reproduce this OPE

λζ2 (CS kernel) is not accounted for

Flavor and x dependence of Λ2,i(x) (TMD PDF) is neglected
I Should at minimum include an effective dependence on Z rapidity Y
I CMS mW analysis found evidence for nontrivial Y dependence

Incorrect bT dependence could easily lead to incorrect qT shape

⇒ Impact on αs(mZ) a priori unclear and needs to be studied
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Additional Slides
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Backup

Scanning over TNP Variations at N3+1LL.
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TNPs provide correct breakdown of theory uncertainty into well-defined,
independent uncertainty sources
I Encode correct point-by-point theory correlations
I Sum in quadrature: ∆pert = 1.75 × 10−3

Note: Some perturbative sources not yet accounted for
I In particular PDF anomalous dimensions (analog of µf variation)
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Results with TNPs and Nonperturbative Parameters.
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Nonperturbative Model.

Model originates from [Collins, Rogers; Phys. Rev. D 91 (2015) 074020 [1412.3820]]

Snonp(bT ) ≡ f̃nonp
i (x, bT )f̃nonp

j (x, bT )

= exp

[
−gj(bT )− gK(bT ) ln

Q2

Q2
0

]

with gj(bT ) =
g b2T√

1 + λ b2T
+ sign(q)

[
1− exp(−|q|b4T )

]

and gK(bT ) = g0

{
1− exp

[
− 1

g0

CFαs(b0/b∗)

π

b2T
b2lim

]}
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