Discussion of Theory Uncertainties in $\alpha_s(m_Z)$ Determination from $Z \ p_T$ by ATLAS.

Frank Tackmann

Deutsches Elektronen-Synchrotron

Les Houches Workshop June 23, 2025

European Research Council Established by the European Commission based on [Thomas Cridge, Giulia Marinelli, FT; arXiv:2506.13874]

2025-06-23 | Frank Tackmann

Setup.

We perform Asimov fits to (unfluctuated) pseudodata

- Standard method to study expected uncertainties in a controlled setting
 - Unobscured by statistical fluctuations and subleading effects
- Goals: Demonstrate TNPs and estimate expected uncertainties in $\alpha_s(m_Z)$
 - Can consistently drop subleading effects in both pseudodata and theory model (power corrections, quark mass effects, EW corrections)
 - They are needed to fit the real data, but are irrelevant for estimating the dominant uncertainties
- Here, I will mostly focus on scale variation results and our resulting concerns about ATLAS $\alpha_s(m_Z)$ determination [arXiv:2309.12986]

Pseudodata

- Central value given by central SCETlib prediction with $lpha_s(m_Z)=0.118$
- Exp. uncertainties and correlations from ATLAS 8 TeV inclusive $Z p_T$ measurement [Eur. Phys. J. C 84 (2024) 315 [arXiv: 2309.09318]]
- Same bins and cuts as used by ATLAS

Uncertainties of perturbative origin

	Absolute uncertainty on $lpha_s(m_Z)$ in units of 10^{-3}	
Perturbative uncertainty	ATLAS	our estimate of expected size
Scale variations	± 0.42	± 2.43
N ⁴ LL' approximation	± 0.04	± 0.75
Flavor/quark masses	+0.40 - 0.29	± 1.32
Total	+0.58 - 0.51	± 2.87

Other uncertainties of concern

- Parameterization of nonperturbative effects at small q_T
 - Nonpert. model does not reproduce correct nonperturbative OPE
- PDF uncertainties from PDF profiling
 - Profiling PDFs consistent with global PDF fit (accounting for tolerances) yields up to 2× larger PDF uncertainty on α_s(m_Z)
 - See discussion of PDF profiling for $\sin^2 \theta_W$ later today

Recall

- Scales are unphysical
- Higher-order effects induced by scale variations do not provide a correct parameterization of missing higher-order terms
- \Rightarrow Scale variations do not provide correct theory correlations

Recall

- Scales are unphysical
- Higher-order effects induced by scale variations do not provide a correct parameterization of missing higher-order terms
- \Rightarrow Scale variations do not provide correct theory correlations

For differential spectrum

- Best we can hope for is a reasonable overall uncertainty band from envelope of various (types of) scale variations
- Theory uncertainty on the *shape* of the spectrum is encoded by point-by-point theory correlations
 - Scale variations are particularly bad for estimating shape uncertainties
- ⇒ Scale variations are insufficient to correctly propagate uncertainty from spectrum to parameter of interest when one is sensitive to shape effects

Scanning over Scale Variations.

Repeat fit for each individual scale variation and take envelope of results

- Amounts to trying out various correlation models for the same total uncertainty band
 - None of the trial variations provides a realistic correlation model
 - Individual variations are not meaningful (which is why we take their envelope)
- Best we can do with scale variations
 - Perform as many variations as we can to "fill out" the band, hoping to include at least one that happens to give sufficiently conservative estimate
 - And/or identify conceptually "independent" subsets of variations and add their envelopes

Scanning over Scale Variations.

- $\mathcal{O}(1\%)$ spectrum uncertainty should give $\mathcal{O}(1\%)$ uncertainty on α_s
- Dominant $\alpha_s(m_Z)$ sensitivity at small $q_T \equiv p_T^Z$ is a *shape* effect (shifting the peak of the spectrum)
 - Whether a 1% spectrum variation yields a 0.5% or 2% variation in $\alpha_s(m_Z)$ entirely depends on shape of variation
 - In other words, point-by-point theory correlations are critically important to propagate theory uncertainty from spectrum to α_s(m_Z)

Scanning over Scale Variations.

Scanning over SCETlib scale variations at N⁴LL

Highest known (essentially) complete order

sum of envelopes: $\Delta_{\text{pert}} = \sqrt{\Delta_{\text{FO}}^2 + \Delta_f^2 + \Delta_{\text{resum}}^2 + \Delta_{\text{match}}^2} = 2.43 \times 10^{-3}$ total envelope: $\Delta_{\text{pert}} = 1.73 \times 10^{-3}$

- ⇒ For similar-size scale-variations in the spectrum (as best we can tell) we find up to $5 \times$ larger $\alpha_s(m_Z)$ variations
 - Scanning over TNPs confirms that these are more realistic estimates
 - Clear indication that scale variations cannot be relied on

- ATLAS uses a 5-flavor massless description appropriate for $m_b \ll q_T$
- For $q_T \sim m_b$, i.e., right in the peak region of the spectrum, finite m_b causes nontrivial $\mathcal{O}(\%)$ effects
- Correct description of bottom threshold requires correct treatment of m_b effects
 - Switching from massless 5-flavor to massless 4-flavor description is not enough since neither is correct for $q_T \sim m_b$
- Implemented a full treatment of m_b effects at NNLL' in SCETlib
 - All primary and secondary mass effects in beam & soft functions and Collins-Soper kernel
- We can estimate impact of missing mass effects by including them in the pseudodata and fitting with a massless 5-flavor theory model
- \Rightarrow Yields a bias in $lpha_s(m_Z)$ of $1.32 imes 10^{-3}$

- "N⁴LLa" from [Phys. Lett. B 845 (2023) 138125 [arXiv:2303.12781]] used as highest order by ATLAS corresponds to an approximate N⁴LL'
 - Compared to corresponding previous order (N³LL'), the most important contributions are missing, namely 4-loop beam and soft functions
 - It is therefore a largely incomplete order, so associated approximation uncertainty should be roughly of comparable size as uncertainty at previous order

- We can estimate expected impact of missing 4-loop beam and soft functions from their associated TNP variations at N⁴⁺⁰LL
- \Rightarrow Yields an uncertainty on $\alpha_s(m_Z)$ of $\pm 0.75 imes 10^{-3}$
 - Consistent with expectation and previous order uncertainties

Nonperturbative Effects.

For perturbative $1/b_T \sim q_T \gg \Lambda_{\rm QCD}$ nonperturbative effects can be systematically expanded in an OPE

$$egin{aligned} ilde{f}_i(x,b_T,\mu,Q) &= ilde{f}_i^{(0)}(x,b_T,\mu,Q) \ & imes \left\{ 1 + b_T^2 \Big[egin{aligned} \Lambda_{2,i}(x) + \lambda_2^{\zeta} \, \ln rac{b_T Q}{b_0} \Big] + \mathcal{O}(\Lambda_{ ext{QCD}}^4 b_T^4)
ight\} \end{aligned}$$

Nonpert. model used by ATLAS does not correctly reproduce this OPE

- λ_2^{ζ} (CS kernel) is not accounted for
- Flavor and x dependence of $\Lambda_{2,i}(x)$ (TMD PDF) is neglected
 - Should at minimum include an effective dependence on Z rapidity Y
 - CMS m_W analysis found evidence for nontrivial Y dependence
- Incorrect b_T dependence could easily lead to incorrect q_T shape

\Rightarrow Impact on $\alpha_s(m_Z)$ a priori unclear and needs to be studied

Additional Slides

Scanning over TNP Variations at N³⁺¹LL.

- TNPs provide correct breakdown of theory uncertainty into well-defined, independent uncertainty sources
 - Encode correct point-by-point theory correlations
 - Sum in quadrature: $\Delta_{
 m pert} = 1.75 imes 10^{-3}$
- Note: Some perturbative sources not yet accounted for
 - ln particular PDF anomalous dimensions (analog of μ_f variation)

Results with TNPs and Nonperturbative Parameters.

Model originates from [Collins, Rogers; Phys. Rev. D 91 (2015) 074020 [1412.3820]]

$$\begin{split} S_{\text{nonp}}(b_{T}) &\equiv \tilde{f}_{i}^{\text{nonp}}(x, b_{T}) \tilde{f}_{j}^{\text{nonp}}(x, b_{T}) \\ &= \exp \left[-g_{j}(b_{T}) - g_{K}(b_{T}) \ln \frac{Q^{2}}{Q_{0}^{2}} \right] \\ \text{with} \quad g_{j}(b_{T}) &= \frac{g \, b_{T}^{2}}{\sqrt{1 + \lambda \, b_{T}^{2}}} + \text{sign}(q) \Big[1 - \exp(-|q| b_{T}^{4}) \Big] \\ \text{and} \quad g_{K}(b_{T}) &= g_{0} \Big\{ 1 - \exp \Big[-\frac{1}{g_{0}} \frac{C_{F} \alpha_{s}(b_{0}/b_{*})}{\pi} \frac{b_{T}^{2}}{b_{\lim}^{2}} \Big] \Big\} \end{split}$$

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No. 101002090 COLORFREE)

European Research Council

Established by the European Commission