

Highlights on BSM searches with flavor physics

Olcyr Sumensari

IJCLab (Orsay)

PhysTeV 2025, Les Houches

Laboratoire de Physique des 2 Infinis

The Precision Frontier

- The Standard Model is an EFT at low energies of a more fundamental theory that is yet unknown:
 ⇒ Hierarchy and flavor problems remain unanswered, among other problems.
 ⇒ Quest for physics beyond the SM!
- The absence of NP signals at the LHC suggests a mass gap between $v_{\rm EW}$ and $\Lambda_{\rm NP} \gtrsim O({\rm TeV})$.
 - ⇒ Precision physics is key to push the boundaries of the SM.
 - ⇒ Historically, precision measurements were fundamental to **guide theory and experiment**: (i) GIM mechanism; (ii) CPV in K- \overline{K} mixing and CKM mechanism; (iii) top and Higgs masses...

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{\mathcal{C}^{(5)}}{\Lambda_L} \mathcal{O}^{(5)} + \sum_i \frac{\mathcal{C}_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$$

Precision flavor measurements can also be essential in guiding the effort beyond the SM

What is the origin of flavor?

• Flavor sector **loose** in the SM:

 \Rightarrow 13 free parameters (masses and quark mixing) — fixed by data.

$$\mathcal{L}_{\text{Yuk}} = -\frac{Y_d^{ij}}{Q_i} \overline{Q_i} d_{Rj} H - \frac{Y_u^{ij}}{Q_i} \overline{Q_i} u_{Rj} \widetilde{H} - \frac{Y_\ell^{ij}}{L_i} \overline{L_i} e_{Rj} H + \text{h.c.}$$

 \Rightarrow These (many) parameters exhibit hierarchical structures that we do not understand.

How to explain the observed patterns in terms of less and more fundamental parameters?

BSM particles related to the **flavor problem** can lead to imprints in low-energy observables — *possibly with non-universal and hierarchical couplings to SM fermions!*

MFV [D'Ambrosio et al. '02], $U(2)^5$ [Barbieri et al. '11,'15]... see also [Faroughy et al. ',20], [Greljo et al. '22]

New physics flavor problem?

Non-trivial flavor structure is needed to reconcile **TeV-scale solutions** of the hierarchy problem with flavor data — *is there are joint solution of both problems?*

⇒ Flavor violation needs to be protected to suppress rare/forbidden processes.

 \Rightarrow Examples: MFV, or flavor symmetries such as $U(2)^5$.

[D'Ambrosio et al. '02], [Barbieri et al. '11]

Flavor observables and hadronic uncertainties

$$\mathcal{O}_{\mathrm{exp}} = \mathcal{O}_{\mathrm{SM}} \left(1 + \delta_{\mathrm{NP}} \right)$$

Look for observables:

- (Highly) sensitive to contributions from New Physics
- Mildly sensitive to hadronic uncertainties
- Accessible in current and/or (near) future experiments.

⇒ Challenging task! LFU tests are a good example:

$$R_{H_c} = \frac{\mathcal{B}(H_b \to H_c \tau \nu)}{\mathcal{B}(H_b \to H_c \mu \nu)}$$

$$B_{(s)} \to D_{(s)}, \ B^*_{(s)} \to D^*_{(s)}, \ B_c \to J/\psi, \ \Lambda_b \to \Lambda_c \ \dots$$

[Kamenik et al. '08, Fajfer et al. '12] ...

$$R_{H_s} = \frac{\mathcal{B}(H_b \to H_s \mu \mu)}{\mathcal{B}(H_b \to H_s ee)} \quad \cdot$$

 $B \to K, B \to K^*, B_s \to \phi, \Lambda_b \to \Lambda \ldots$

[Hiller et al. '03] ...

Accidental symmetries and forbidden processes

Global symmetry of the SM gauge sector:

$$U(3)^5 \equiv U(3)_Q \times U(3)_L \times U(3)_U \times U(3)_D \times U(3)_E$$

Broken by Yukawas to

$$U(1)_B \times U(1)_e \times U(1)_\mu \times U(1)_\tau$$

Examples:

- Proton decay (BNV): $p \rightarrow \pi^0 e^+$
- $0\nu\beta\beta$ (LNV): $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$
- Lepton Flavor Violation (LFV): $\mu \rightarrow e\gamma$

Very clean probes of New Physics!

Combined effort!

Flavor physics is a combined effort — *complementary to Higgs/EW and direct searches!*

Rich experimental landscape: *large experiments (with extensive physics program) and small experiments (with specific targets).*

Outline

- I. CKM-ology
- **II.** Highlights in *B*-physics
- III. Probing flavor at high- p_T
- IV. Outlook

I. CKM-ology

Olcyr Sumensari (IJCLab, Orsay)

Strategy:

Fix the CKM matrix entries through tree-level decays, and over-constrain it with loopinduced processes:

Good agreement! But there are a **few tensions** to be solved (*precision physics is <u>hard</u>*!)

Example: kaon decays

Hadronic uncertainties:

$$\langle 0|\bar{s}\gamma^{\mu}\gamma_5 u|K^+\rangle \to f_K$$

$$\langle \pi^+ | \bar{s} \gamma^\mu u | K^0 \rangle \propto f_{0,+}(q^2)$$

• Non-perturbative QCD (Lattice QCD needed) — cf. FLAG review.

Example: kaon decays

Hadronic uncertainties:

$$\langle 0|\bar{s}\gamma^{\mu}\gamma_5 u|K^+\rangle \to f_K$$

$$\langle \pi^+ | \bar{s} \gamma^\mu u | K^0 \rangle \propto f_{0,+}(q^2)$$

- Non-perturbative QCD (Lattice QCD needed) cf. FLAG review.
- Current precision requires radiative and isospin-breaking corrections:

$$\alpha_{\rm em} \approx \frac{1}{137}$$
 and $\frac{m_d - m_u}{\Lambda_{\rm QCD}} \approx \mathcal{O}(1\%)$

 \Rightarrow Included in recent QCD+QED simulations of $K(\pi) \rightarrow \mu\nu$ on the lattice!

[Di Giusti et al. '17, '18], [Di Carlo et al. '19]...

FLAG

Better **understanding** the **hadronic uncertainties** will be **fundamental** to solving these (mild) discrepancies! New exp. inputs would be **welcome too** (e.g., NA62)!

Inclusive vs. exclusive: V_{cb} and V_{ub}

Long-standing discrepancy:

$$B \to D^{(*)} l\nu$$
$$B \to \pi l\nu$$
$$\frac{B_s \to K \mu \nu}{B_s \to D_s \mu \nu}$$
...

$$B \to X_{(c)} l \nu$$

<u>More problematic</u>: V_{cb} plays an essential role in the predictions of FCNCs through unitarity!

$$|V_{tb}V_{ts}^*| = |V_{cb}| \left[1 + \mathcal{O}(\lambda^2)\right]$$

CKM and theory uncertainties

[Becirevic, Piazza, OS. '23]

see also [Buras et al. '21, '22]

The ambiguity in determining V_{cb} can be a **bottleneck** for **SM predictions** of **clean FCNC processes** such as $B \to K \nu \bar{\nu}$ and $B_s \to \mu \mu$ in the long term.

II. Highlights in *B*-physics

[Recap] *B*-meson decays

Targets of current experiments (LHCb & Belle-II):

• Loop-induced decays: e.g., $b \to s\ell\ell$ and $b \to s\nu\bar{\nu}$

$$B \to K^{(*)}\ell\ell$$
$$B \to K^{(*)}\nu\bar{\nu}$$
$$B_s \to \phi\ell\ell$$
$$\dots$$

• **Tree-level decays:** $e.g., b \rightarrow c\tau\bar{\nu}$

$$B \to D^{(*)} \ell \nu$$

 $B_s \to D_s^{(*)} \ell \nu$
 \dots

These **processes** are **related** through **gauge invariance** — *within SMEFT and UV models.*

In both cases, ratios of observables can be used to reduce theoretical uncertainties.

• SM predictions are under reasonable control, cf. back-up.

LQCD: [FNAL/MILC, HPQCD] see also [Bordone et al. '24]

- **Experimental situation** remains **unclear** *more data needed!*
- New physics models explaining these excesses lead to signals in *r*-related observables:

From LFU to angular observables: $b \rightarrow c \tau \bar{\nu}$

Example:

 $B\to D\tau\nu$

see e.g. [Becirevic, Jaffredo, Penuelas, OS, '21]

• Many more opportunities in other modes:

 $B \to D^* (\to D\pi) \tau \bar{\nu}$

$$\Lambda_b \to \Lambda_c (\to \Lambda \pi) \tau \bar{\nu}$$

see e.g. [Becirevic et al. '16, '19]

[lguro et al. '18], [de Boer et al. '19], [Bobeth et al. '21]

• First exp. studies for specific observables:

Can we further explore $b \rightarrow c\tau\nu$ angular observables?

see [lguro et al. '24] for discussion

Anomalies in $B \to K^{(*)}\ell\ell$ decays?

• $B \to K^{(*)}\mu\mu$ observables show a preference for $\delta C_{9\mu} < 0$:

 $\mathcal{O}_{9\ell} = \left(\bar{s}_L \gamma^\mu b_L\right) \left(\bar{\ell} \gamma_\mu \ell\right)$ $\mathcal{O}_{10\ell} = \left(\bar{s}_L \gamma^\mu b_L\right) \left(\bar{\ell} \gamma_\mu \gamma_5 \ell\right)$

New physics effects or <u>underestimated</u> hadronic uncertainties?

see e.g. [Ciuchini et al'. '21, Gubernari et al. '22, Isidori et al. '24]...

Anomalies in $B \to K^{(*)}\ell\ell$ decays?

• $B \to K^{(*)}\mu\mu$ observables show a preference for $\delta C_{9\mu} < 0$:

 $\mathcal{O}_{9\ell} = \left(\bar{s}_L \gamma^\mu b_L\right) \left(\bar{\ell} \gamma_\mu \ell\right)$ $\mathcal{O}_{10\ell} = \left(\bar{s}_L \gamma^\mu b_L\right) \left(\bar{\ell} \gamma_\mu \gamma_5 \ell\right)$

New physics effects or <u>underestimated</u> hadronic uncertainties?

see e.g. [Ciuchini et al'. '21, Gubernari et al. '22, Isidori et al. '24]...

LFU observables are unaffected by these uncertainties, but (now) in agreement with the SM:

There is still room for exp. improvement before reaching the $\mathcal{O}(1\%)$ th. precision of LFU tests!

Why to study *B*-decays with neutrinos?

• $B \to K^{(*)}\ell\ell$:

- Sensitive to BSM effects.
- Experimentally clean (especially for $\ell = \mu$).
- Many observables (angular distribution).
- Theoretically challenging (non-factorizable contributions...)

• $B \to K^{(*)} \nu \bar{\nu}$:

 \checkmark

X

- Sensitive to BSM physics effects.
- Exp. more challenging (missing energy).
- Fewer observables.
- Theoretically cleaner!
- Sensitive to operators with τ -leptons.

- $B \rightarrow K \nu \bar{\nu}$ in the SM
- Effective Hamiltonian within the SM:

see e.g. [Buras et al. '14]

$$\mathcal{L}_{\text{eff}}^{\text{b}\to\text{s}\nu\nu} = \frac{4G_F\lambda_t}{\sqrt{2}} \frac{\alpha_{\text{em}}}{2\pi} \sum_i C_L^{\text{SM}} (\bar{s}_L \gamma_\mu b_L) (\bar{\nu}_{Li} \gamma^\mu \nu_{Li}) + \text{h.c.},$$
$$\lambda_t = V_{tb} V_{ts}^*$$

• Short-distance contributions known to good precision:

$$C_L^{\rm SM} = -X_t / \sin^2 \theta_W$$
$$= -6.32(7)$$

Including NLO QCD and two-loop EW contributions:

$$X_t = 1.462(17)(2)$$

[Buchala et al. '93, '99], [Misiak et al. '99], [Brod et al. '10]

- $B \rightarrow K \nu \bar{\nu}$ in the SM
 - Effective Hamiltonian within the SM:

see e.g. [Buras et al. '14]

$$\mathcal{L}_{\text{eff}}^{\text{b}\to\text{s}\nu\nu} = \frac{4G_F\lambda_t}{\sqrt{2}} \frac{\alpha_{\text{em}}}{2\pi} \sum_i C_L^{\text{SM}} (\bar{s}_L \gamma_\mu b_L) (\bar{\nu}_{Li} \gamma^\mu \nu_{Li}) + \text{h.c.},$$
$$\lambda_t = V_{tb} V_{ts}^*$$

• Short-distance contributions known to good precision:

$$C_L^{\rm SM} = -X_t / \sin^2 \theta_W$$
$$= -6.32(7)$$

Including NLO QCD and two-loop EW contributions:

$$X_t = 1.462(17)(2)$$

[Buchala et al. '93, '99], [Misiak et al. '99], [Brod et al. '10]

Two main sources of uncertainties:

ii) CKM matrix:

From CKM unitarity:

$$V_{tb}V_{ts}^*| = |V_{cb}| \left(1 + \mathcal{O}(\lambda^2)\right)$$

Which value to take (incl. vs. excl.)?

Form-factors: $B \rightarrow K \nu \bar{\nu}$

• Lattice QCD data available at nonzero recoil $(q^2 \neq q_{\text{max}}^2)$ for all form-factors:

$$\langle K(k)|\bar{s}\gamma^{\mu}b|B(p)\rangle = \left[(p+k)^{\mu} - \frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}\right]f_{+}(q^{2}) + q^{\mu}\frac{m_{B}^{2} - m_{K}^{2}}{q^{2}}f_{0}(q^{2})$$
with $f_{+}(0) = f_{0}(0)$.
Only form-factor needed for $B \to K\nu\bar{\nu}!$

• **[NEW]** We update the FLAG average by combining [HPQCD '22] results with [FNAL/MILC '16]:

 $[\]approx 3\sigma$ above the SM prediction

[Belle-II, 2311.14647]

- Only the incl. method shows an excess above background (and w.r.t. the SM predictions).
- The had. method is compatible with the SM (and with no observed signal).

Several observables to be further explored: $\mathscr{B}(B^0 \to K_S \nu \nu)$, $\mathscr{B}(B \to K^* \nu \nu)$ and $F_L(B \to K^* \nu \nu)$

EFT for $b \rightarrow s \nu \bar{\nu}$

• Low-energy EFT:

see e.g. [Buras et al. '14]

Exclusion from Belle/BaBar

$$\mathcal{L}_{\text{eff}}^{\mathrm{b}\to\mathrm{s}\nu\nu} = \frac{4G_F\lambda_t}{\sqrt{2}} \frac{\alpha_{\text{em}}}{2\pi} \sum_{ij} \left[C_L^{\nu_i\nu_j} \left(\bar{s}_L \gamma_\mu b_L \right) \left(\bar{\nu}_{Li} \gamma^\mu \nu_{Lj} \right) + C_R^{\nu_i\nu_j} \left(\bar{s}_R \gamma_\mu b_R \right) \left(\bar{\nu}_{Li} \gamma^\mu \nu_{Lj} \right) \right] + \text{h.c.},$$

40

• Complementarity of $B \to K \nu \bar{\nu}$ and $B \to K^* \nu \bar{\nu}$:

Forbidden region in the EFT approach

[Bause et al. '23]

[Allwicher et al (**OS**). '23]

Predictions

• Another observable to measure is the K^* longitudinal-polarisation asymmetry:

$$F_L \equiv \frac{\Gamma_L(B \to K^* \nu \bar{\nu})}{\Gamma(B \to K^* \nu \bar{\nu})} \qquad \qquad F_L(B \to K^* \nu \bar{\nu})^{\rm SM} = 0.49(7) \qquad \qquad \mathcal{R}_{F_L} \equiv \frac{F_L}{F_L^{\rm SM}}$$

[Altmannshofer et al. '09]

The measurements of $\mathscr{B}(B \to K^* \nu \bar{\nu})$ and $F_L(B \to K^* \nu \bar{\nu})$ would be **model-independent tests**!

SMEFT for $b \rightarrow s\nu\nu$ (and $b \rightarrow s\ell\ell$)

- **SMEFT** is formulated for $\Lambda \gg v_{ew}$ with $SU(3)_c \times SU(2)_L \times U(1)_Y$ invariant operators.
- Gauge invariance correlates $b \to s\nu\bar{\nu}$ with $b \to s\ell\ell$ since $L_i = (\nu_{Li}, \ell_{Li})^T$.
- Two types of d = 6 contributions at tree-level:

[Buchmuller & Wyler. '85, Gradkowski et al. '10]

SMEFT for $b \to s\nu\nu$ (and $b \to s\ell\ell$)

• ψ^4 operators invariant under $SU(2) \times U(1)_Y$:

$$\begin{split} \left[\mathcal{O}_{lq}^{(1)}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}L_{j}\right)\left(\overline{Q}_{k}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{lq}^{(3)}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}\tau^{I}L_{j}\right)\left(\overline{Q}_{k}\tau^{I}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{ld}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}L_{j}\right)\left(\overline{d}_{k}\gamma_{\mu}d_{l}\right)\\ \left[\mathcal{O}_{eq}\right]_{ijkl} &= \left(\overline{e}_{i}\gamma^{\mu}e_{j}\right)\left(\overline{Q}_{k}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{ed}\right]_{ijkl} &= \left(\overline{e}_{i}\gamma^{\mu}e_{j}\right)\left(\overline{d}_{k}\gamma_{\mu}d_{l}\right) \end{split}$$

$$b \to s\ell\ell \qquad \qquad b \to s\nu\bar{\nu}$$

$$\begin{bmatrix} \mathcal{O}_{lq}^{(1)} \end{bmatrix}_{ijkl} = \left(\overline{L}_i \gamma^{\mu} L_j \right) \left(\overline{Q}_k \gamma_{\mu} Q_l \right)$$

= $\left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \dots$

$$\left[\mathcal{O}_{lq}^{(3)} \right]_{ijkl} = \left(\overline{L}_i \gamma^{\mu} \tau^I L_j \right) \left(\overline{Q}_k \gamma_{\mu} \tau^I Q_l \right)$$

=
$$\left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) - \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \dots$$

$$\begin{bmatrix} \mathcal{O}_{ld} \end{bmatrix}_{ijkl} = \left(\overline{L}_i \gamma^{\mu} L_j \right) \left(\overline{d}_k \gamma_{\mu} d_l \right) \\ = \left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Rk} \gamma_{\mu} d_{Rl} \right) + \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Rk} \gamma_{\mu} d_{Rl} \right)$$

SMEFT for $b \rightarrow s\nu\nu$ (and $b \rightarrow s\ell\ell$)

• ψ^4 operators invariant under $SU(2) \times U(1)_Y$:

$$\begin{split} \left[\mathcal{O}_{lq}^{(1)}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}L_{j}\right)\left(\overline{Q}_{k}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{lq}^{(3)}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}\tau^{I}L_{j}\right)\left(\overline{Q}_{k}\tau^{I}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{ld}\right]_{ijkl} &= \left(\overline{L}_{i}\gamma^{\mu}L_{j}\right)\left(\overline{d}_{k}\gamma_{\mu}d_{l}\right)\\ \left[\mathcal{O}_{eq}\right]_{ijkl} &= \left(\overline{e}_{i}\gamma^{\mu}e_{j}\right)\left(\overline{Q}_{k}\gamma_{\mu}Q_{l}\right)\\ \left[\mathcal{O}_{ed}\right]_{ijkl} &= \left(\overline{e}_{i}\gamma^{\mu}e_{j}\right)\left(\overline{d}_{k}\gamma_{\mu}d_{l}\right) \end{split}$$

- Correlations for concrete mediators:
 - $Z' \sim (\mathbf{1}, \mathbf{1}, 0) \quad \vdots \quad \mathcal{C}_{lq}^{(1)} \neq 0, \qquad \mathcal{C}_{lq}^{(3)} = 0$
 - $V \sim (\mathbf{1}, \mathbf{3}, 0)$: $C_{lq}^{(1)} = 0, \quad C_{lq}^{(3)} \neq 0$
 - $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$: $\mathcal{C}_{lq}^{(1)} = \mathcal{C}_{lq}^{(3)}$
 - $S_3 \sim (\bar{\mathbf{3}}, \mathbf{3}, 1/3)$: $\mathcal{C}_{lq}^{(1)} = 3 \mathcal{C}_{lq}^{(3)}$

. . .

 $(SU(3)_c, SU(2)_L, U(1)_Y)$

$$b \to s\ell\ell$$
 $b \to s\nu\bar{\nu}$

$$\begin{bmatrix} \mathcal{O}_{lq}^{(1)} \end{bmatrix}_{ijkl} = \left(\overline{L}_i \gamma^{\mu} L_j \right) \left(\overline{Q}_k \gamma_{\mu} Q_l \right)$$

= $\left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \dots$

$$\begin{bmatrix} \mathcal{O}_{lq}^{(3)} \end{bmatrix}_{ijkl} = \left(\overline{L}_i \gamma^{\mu} \tau^I L_j \right) \left(\overline{Q}_k \gamma_{\mu} \tau^I Q_l \right) \\ = \left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) - \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Lk} \gamma_{\mu} d_{Ll} \right) + \dots$$

$$\begin{bmatrix} \mathcal{O}_{ld} \end{bmatrix}_{ijkl} = \left(\overline{L}_i \gamma^{\mu} L_j \right) \left(\overline{d}_k \gamma_{\mu} d_l \right) \\ = \left(\overline{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right) \left(\overline{d}_{Rk} \gamma_{\mu} d_{Rl} \right) + \left(\overline{\nu}_{Li} \gamma^{\mu} \nu_{Lj} \right) \left(\overline{d}_{Rk} \gamma_{\mu} d_{Rl} \right)$$

*with couplings to τ -leptons!

Hidden sectors?

• $B \rightarrow K + \text{inv}$ is also a probe of light/invisibles particles — different EFT description needed:

- If the excess is due to $B \to KX(\to inv)$, where $X \sim (1, 1, 0)$ is a mediator produced on-shell (*i.e.*, with $m_X < m_B$), the main difference would be a **peak** at $q^2 \simeq m_X^2$.
- Reasonable fit to Belle-II data since the excess is mostly localised (within large uncertainties):

⇒ To be checked by **dedicated searches** at **Belle-II**!

[NEW] $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

• NA62 latest determination of the theoretically clean $K^+ \to \pi^+ \nu \bar{\nu}$ mode agrees with the SM at the 2σ level — complementary to $B \to K^{(*)} \nu \bar{\nu}$ within concrete flavor scenarios!

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu})^{\exp} = \left(13.0^{+3.3}_{-3.0}\right) \times 10^{-11}$$

Precise measurements of <u>both</u> kaon and *B*-meson decays are fundamental to probe BSM flavor dynamics — NA62 run-3 will reach O(15%) uncertainty...

- $B_s \rightarrow \tau \tau$ and $B \rightarrow K^{(*)} \tau \tau$
- Extremely difficult measurement <u>Tera-Z machine</u> such as FCC-ee needed! [Kamenik et al. '17]

Exp. limits (90%CL.):

SM predictions:

III. Probing flavor at high- p_T
LHC as a flavor experiment

High-p_T searches (CMS and ATLAS) **can probe** the **same four-fermion operators** constrained by **flavor-physics experiments** (NA62, KOTO, BES-III, LHCb, Belle-II...).

Recent works on EFTs and DY: Cirigliano et al. '12, '18], [de Blas et al. '13], [Farina et al. '16], [Dawson et al. '18, '21], [Greljo et al. '18], [Shepherd et al. '18], [Fuentes-Martín et al. '20], [Marzocca et al. '20], [Endo et al. '21], [Boughezal et al. '21], [Greljo et al. '22][Grunwald et al. '23], [Hiller et al. '24] ...

[Angelescu, Faroughy, OS. '20], [Allwicher, Faroughy, Jaffredo, OS, Wilsch. '22]

LHC as a flavor experiment

[PDF4LHC15 nnlo mc]

ii) Energy helps precision

cf. e.g. [Farina et al. '16]

Energy-growth can partially overcome heavy-flavor PDF suppression.

Non-resonant searches at the LHC

<u>Strategy</u>: Recast **di-lepton searches** and look for **NP effects** in the **tails** of the **invariant-mass** distributions (where *S*/*B* is large).

<u>Goal</u>: Probe transitions that are **poorly unconstrained** at **low energies** — *including flavor***!**

Non-resonant searches at the LHC

Strategy: Recast **di-lepton searches** and look for **NP effects** in the **tails** of the **invariant-mass** distributions (where *S*/*B* is large).

<u>Goal</u>: Probe transitions that are **poorly unconstrained** at **low energies** — *including* **flavor**!

<u>**Caveat</u>**: Check that the **EFT** is indeed valid $(E \ll \Lambda)$ — or, use instead a concrete model.</u>

SMEFT operators

• Warsaw basis d = 6 (2499 operators...)

[Buchmuller, Wyler. '85], [Grzadkowski et al. '10]

• Operator classes contributing to $pp \rightarrow \ell \ell'$ at tree-level: ψ^4 , $\psi^2 XH$, $\psi^2 D^2 H$

Dimension			d = 6		d = 8				
Operator classes		ψ^4	$\psi^2 H^2 D$	$\psi^2 X H$	$\psi^4 D^2$	$\psi^4 H^2$	$\psi^2 H^4 D$	$\psi^2 H^2 D^3$	
Amplitude scaling		E^2/Λ^2	v^2/Λ^2	vE/Λ^2	E^4/Λ^4	$v^2 E^2 / \Lambda^4$	v^4/Λ^4	$v^2 E^2 / \Lambda^4$	
Parameters	# ℝe	456	45	48	168	171	44	52	
	# [m	399	25	48	54	63	12	12	

*only d = 8 terms interfering with the SM

Too many operators...

SMEFT operators

• Warsaw basis d = 6 (2499 operators...)

[Buchmuller, Wyler. '85], [Grzadkowski et al. '10]

• Operator classes contributing to $pp \rightarrow \ell \ell'$ at tree-level: ψ^4 , $\psi^2 XH$, $\psi^2 D^2 H$

Dimensi	on	d = 6			d=8				
Operator classes		ψ^4	$\psi^2 H^2 D$	$\psi^2 X H$	$\psi^4 D^2$	$\psi^4 H^2$	$\psi^2 H^4 D$	$\psi^2 H^2 D^3$	
Amplitude scaling		E^2/Λ^2	v^2/Λ^2	vE/Λ^2	E^4/Λ^4	$v^2 E^2 / \Lambda^4$	v^4/Λ^4	$v^2 E^2/\Lambda^4$	
Parameters	# ℝe	456	45	48	168	171	44	52	
	# Im	399	25	48	54	63	12	12	

[Allwicher, Faroughy, Jaffredo, **OS**, Wilsch. '22]

*only d = 8 terms interfering with the SM

- Too many operators...
- **Usual strategies:**
- i) To invoke a *flavor symmetry* (*e.g.*, MFV, U(2)⁵...) or a specific model.
 see e.g. [Grunwald et al. '23, Greljo et al. '23]

ii) To focus on a *specific transition* and/or *subset of operators*.

Our approach: to automatize!

<u>HighPT</u>: A Tool for high- p_T Drell-Yan Tails Beyond the SM

Searches available (140 fb^{-1}):

$pp \to \tau\tau$	[arXiv:2002.12223]
$pp \rightarrow ee, \ \mu\mu$	CMS-PAS-EXO-19-019
$pp \to \tau \nu$	ATLAS-CONF-2021-025
$pp \to e\nu, \mu\nu$	[arXiv:1906.05609]
$pp \rightarrow e\mu, e\tau, \mu\tau$	[arXiv:2205.06709]

*more to be included (see GitHub page)

Reinterpretation of latest LHC Drell-Yan searches for New Physics scenarios with general flavor structure.

MadGraph 5 + Pythia + Delphes

Main functionalities:

- Consider SMEFT (d ≤ 8) and specific mediators (LQs, Z', ...).
- Computes cross-sections, event yields and likelihoods as a function of NP couplings.
- **SMEFT likelihoods** can be exported in the *WCxf* format.

[[]Aebischer et al. '17]

Example: $U_1 \sim (\mathbf{3}, \mathbf{1}, 2/3)$

 $\mathcal{L}_{U_1} \supset [x_1^L]_{i\alpha} U_1^\mu \, \bar{q}_i \gamma_\mu l_\alpha + \text{h.c.}$

First considered by [Eboli, '88] cf. also [Faroughy et al. '15]

Complementarity between LHC data, flavor and EWPT

Beyond Drell-Yan

Charged-current transition:

$$\begin{aligned} \mathcal{L}_{\text{LEFT}} &= -2\sqrt{2}G_F V_{ij} \Big[\Big(1 + g_{V_L}^{ij\,\ell}\Big) \big(\bar{u}_{Li}\gamma_{\mu}d_{Lj}\Big) \big(\bar{\ell}_L\gamma^{\mu}\nu_L\Big) + g_{V_R}^{ij\,\ell} \big(\bar{u}_{Ri}\gamma_{\mu}d_{Rj}\Big) \big(\bar{\ell}_L\gamma^{\mu}\nu_L\Big) \\ &+ g_{S_L}^{ij\,\ell} \big(\bar{u}_{Ri}d_{Lj}\Big) \big(\bar{\ell}_R\nu_L\Big) + g_{S_R}^{ij\,\ell} \big(\bar{u}_{Li}d_{Rj}\big) \big(\bar{\ell}_R\nu_L\Big) + g_T^{ij\,\ell} \big(\bar{u}_{Ri}\sigma_{\mu\nu}d_{Lj}\big) \big(\bar{\ell}_R\sigma^{\mu\nu}\nu_L\Big) \Big] + \text{h.c.} \end{aligned}$$

Matching to SMEFT @d = 6:

$$egin{aligned} g_{V_L}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^4}^{ij\ell\ell} + rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^2 D H^2}^{ij} \ g_{V_R}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^2 D H^2}^{ij\ell\ell} \ g_{S_L}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^4}^{ij\ell\ell} \ g_{S_R}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^4}^{ij\ell\ell} \ g_{T}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^4}^{ij\ell\ell} \end{aligned}$$

Beyond Drell-Yan

Charged-current transition:

$$\mathcal{L}_{\text{LEFT}} = -2\sqrt{2}G_F V_{ij} \Big[\Big(1 + g_{V_L}^{ij\,\ell} \Big) \big(\bar{u}_{Li} \gamma_\mu d_{Lj} \big) \big(\bar{\ell}_L \gamma^\mu \nu_L \big) + g_{V_R}^{ij\,\ell} \big(\bar{u}_{Ri} \gamma_\mu d_{Rj} \big) \big(\bar{\ell}_L \gamma^\mu \nu_L \big) \\ + g_{S_L}^{ij\,\ell} \big(\bar{u}_{Ri} d_{Lj} \big) \big(\bar{\ell}_R \nu_L \big) + g_{S_R}^{ij\,\ell} \big(\bar{u}_{Li} d_{Rj} \big) \big(\bar{\ell}_R \nu_L \big) + g_T^{ij\,\ell} \big(\bar{u}_{Ri} \sigma_{\mu\nu} d_{Lj} \big) \big(\bar{\ell}_R \sigma^{\mu\nu} \nu_L \big) \Big] + \text{h.c.}$$

Matching to SMEFT @d = 6:

 DH^2

$$egin{aligned} g_{V_L}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^4}^{ij\ell\ell} + rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^2}^{ij} \ g_{V_R}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^2 D H^2}^{ij\ell\ell} \ g_{S_L}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^4}^{ij\ell\ell} \ g_{S_R}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^4}^{ij\ell\ell} \ g_{T}^{ij\ell} &\propto rac{v^2}{\Lambda^2} \, \mathcal{C}_{\psi^4}^{ij\ell\ell} \end{aligned}$$

*expanding on v/E and E/ Λ for v $\ll E \ll \Lambda$

Beyond Drell-Yan

Charged-current transition:

$$\begin{aligned} \mathcal{L}_{\text{LEFT}} &= -2\sqrt{2}G_F V_{ij} \Big[\Big(1 + g_{V_L}^{ij\,\ell}\Big) \big(\bar{u}_{Li}\gamma_{\mu}d_{Lj}\Big) \big(\bar{\ell}_L\gamma^{\mu}\nu_L\Big) + g_{V_R}^{ij\,\ell} \big(\bar{u}_{Ri}\gamma_{\mu}d_{Rj}\Big) \big(\bar{\ell}_L\gamma^{\mu}\nu_L\Big) \\ &+ g_{S_L}^{ij\,\ell} \big(\bar{u}_{Ri}d_{Lj}\Big) \big(\bar{\ell}_R\nu_L\Big) + g_{S_R}^{ij\,\ell} \big(\bar{u}_{Li}d_{Rj}\big) \big(\bar{\ell}_R\nu_L\Big) + g_T^{ij\,\ell} \big(\bar{u}_{Ri}\sigma_{\mu\nu}d_{Lj}\big) \big(\bar{\ell}_R\sigma^{\mu\nu}\nu_L\Big) \Big] + \text{h.c.} \end{aligned}$$

Beyond Drell-Yan (preliminary)

[Eboli, Martines, Santos-Leal, **OS**. In preparation]

See also [Alioli et al. '17]

 Recast of CMS/ATLAS searches for pp → Vh and pp → WV, with V = W, Z [cf. back-up] related through Goldstone equivalence theorem: [ATLAS, 2410.19161], [CMS, 2312.07562]...

Limits extracted using **STXS data** are $\approx 10 \times$ **stronger** than those from signal-strength data.

Already useful limits (competitive with flavor/EW data) — to be improved at HL-LHC!

Beyond Drell-Yan (preliminary)

Example: $c \rightarrow se\nu$

[Becirevic, Martines, Rosauro-Alcaraz, OS. In preparation]

See also [Camalich et al. '20] for DY limits

These LHC limits leave **little room** for **BSM effects** in $c \rightarrow d\ell \nu$ and $c \rightarrow s\ell \nu$ transitions — charm semileptonic decays are rather laboratories to test (L)QCD calculations!

Summary/Outlook

Summary/Outlook

Many opportunities to explore physics (B)SM in current/future experiments!

Lepton Flavor Violation

Significant experimental progress is expected in the near future — many opportunities!

Summary/Outlook

Marginal increase in energy, but $\approx 20 \times \text{luminosity}!$

Questions/Challenges — mid/long term

- I. How to resolve the V_{ub} & V_{cb} problems? The *parametric uncertainty* from CKM will soon become a *bottleneck*...
- II. LQCD progress can also open new directions for exploration what to expect in the mid- long-term?
- III. Current exp. precision in certain observables (EDMs) is already sensitive to twoloop contributions from EFTs, but *two-loop RGEs* are *not fully known yet*...
 First steps in [Fuentes-Martin, '24], [Aebischer et al. '25], [Naterop et al. '25]
- IV. What is the best strategy to extract flavor limits from LHC data (EFT validity...)? [Allwicher et al. '24]
- V. Are there other relevant probes of flavor-changing transitions at high- p_T ?
- VI. New theoretical approaches to the flavor problem?

VII.What are the opportunities for flavor physics in future high-energy experiments?

Flavor-physics at future experiments

_∩

	Particle production (10^9)	B^0/\overline{B}^0	B^+/B^-	B_s^0/\overline{B}_s^0	B_c^+/\overline{B}_c^-	$\Lambda_b/\overline{\Lambda}_b$	$c\overline{c}$	$\tau^+ \tau^-$	
	Belle II	27.5	27.5	n/a	n/a	n/a	65	45	
	FCC-ee	620	620	150	4	130	600	170	
					[FCC S	nowmass Sui	nmary, 2	2203.06520]	
10 ⁷	SPP2026 Preliminary Most of the impro	ov. here	~	Expected i Current bo	mprov und	d_{ϵ}	[0	G. Isidori	talk at ESPPU]
10 ⁵ -	CKM determin	ation	$ \begin{array}{c} + \nu \nu \\ \mu \rightarrow e \end{array} $	$\rightarrow 3e$			d_N		
- 1000 -	Δm_B	$\begin{bmatrix} b \to s\gamma \\ B_{s,d} \to \mu \end{bmatrix}$	$K^+ \to \pi$	A	$\tau \neq \mu$	$\tau \rightarrow 3\mu$			
10-									
•	$\Delta F=2$	$(\Delta F=1)_{qu}$	uarks LF	FV(μ→e)	LFV(r -	→e) EI)Ms		

Thank you!

Back-up

[NEW] Warning!

\Rightarrow Needs clarification to reliably extract $|V_{cb}|$ from $B \rightarrow D^* \ell \bar{\nu} \dots$

NB. JLQCD agrees well with exp. data, *albeit* with larger uncertainties — cf. back-up!

<u>Way out</u>: independent LQCD results + Belle-II data!

Which CKM value?

$$\lambda_t = V_{tb} V_{ts}^*$$

• Using available $b \to c \ell \bar{\nu}$ data:

$$\begin{split} |\lambda_t| \times 10^3 &= \begin{cases} 41.4 \pm 0.8 \,, & (B \to X_c l \bar{\nu}) & \text{[HFLAV, '22]} \\ 39.3 \pm 1.0 \,, & (B \to D l \bar{\nu}) & \text{[FLAG, '21]} \\ 37.8 \pm 0.7 \,, & (B \to D^* l \bar{\nu}) & \text{[HFLAV, '22]} \end{cases} \end{split}$$

... to be compared to CKM global fits:

cf. also [Martinelli et al. '21]

$$|\lambda_t|_{\text{UTfit}} = (41.4 \pm 0.5) \times 10^{-2}$$
 $|\lambda_t|_{\text{CKMfitter}} = (40.5 \pm 0.3) \times 10^{-2}$

• Alternative strategy: to use $\Delta m_{B_s} \propto f_{B_s}^2 \hat{B}_{B_s} |\lambda_t|^2$

[Buras, Venturini. '21, '22]

$$\begin{aligned} |\lambda_t| \times 10^3 &= \begin{cases} 41.9 \pm 1.0 \,, & (N_f = 2 + 1 + 1) \\ 39.2 \pm 1.1 \,, & (N_f = 2 + 1) \end{cases} & f_{B_s} \sqrt{\hat{B}_{B_s}} = 256 \pm 6 \,\,\mathrm{MeV} & (N_f = 2 + 1 + 1) \\ f_{B_s} \sqrt{\hat{B}_{B_s}} = 274 \pm 8 \,\,\mathrm{MeV} & (N_f = 2 + 1) \end{cases} \\ f_{B_s} \sqrt{\hat{B}_{B_s}} = 274 \pm 8 \,\,\mathrm{MeV} & (N_f = 2 + 1) \\ f_{B_s} \sqrt{\hat{B}_{B_s}} = 274 \pm 8 \,\,\mathrm{MeV} & (N_f = 2 + 1) \end{cases} \\ \end{aligned}$$

There is not a clear answer to this ambiguity so far.

O. Sumensari

LFU in $b \rightarrow s\ell\ell$ [LHCb]

Combining flavor data with EW/Higgs

Example: FCC-ee projections for $U(2)^5$

[Allwicher et al. '25]

FCCee projections: *τ***-physics**

Belle-II and τ -decays

Belle-II will **improve** the **sensitivity** on $\tau \to e$ and $\tau \to \mu$ decays by a **factor** $\mathcal{O}(10)$:

LFV decays

BNV decays

LFU vs. single-flavor

Semileptonic charm decays

 $D \to K\ell\nu: \quad \langle K(k)|\bar{c}\gamma_{\mu}s|D(p)\rangle \propto f_{+}(q^{2}), f_{0}(q^{2}) \quad \langle K(k)|\bar{c}\gamma_{\mu}\gamma_{5}s|D(p)\rangle = 0 \quad \langle K(k)|\bar{c}\sigma_{\mu\nu}s|D(p)\rangle \propto f_{T}(q^{2})$

More work needed to understand the differences (lattice artefacts)

Process	Experiment	Luminosity	Ref.	$x_{ m obs}$	x
$pp \to \tau\tau$	ATLAS	$139{ m fb}^{-1}$	[85]	$m_T^{ ext{tot}}(au_h^1, au_h^2, ot\!\!\!\!E_T)$	$m_{ au au}$
$pp ightarrow \mu \mu$	\mathbf{CMS}	$140{\rm fb}^{-1}$	[86]	$m_{\mu\mu}$	$m_{\mu\mu}$
$pp \to ee$	\mathbf{CMS}	$137{ m fb}^{-1}$	[86]	m_{ee}	m_{ee}
$pp \rightarrow \tau \nu$	ATLAS	$139{ m fb}^{-1}$	[87]	$m_T(au_h, ot\!\!\!E_T)$	$p_T(au)$
$pp ightarrow \mu u$	ATLAS	$139{ m fb}^{-1}$	[88]	$m_T(\mu, ot\!\!\!\!E_T)$	$p_T(\mu)$
$pp \to e\nu$	ATLAS	$139{ m fb}^{-1}$	[88]	$m_T(e, ot\!\!\!E_T)$	$p_T(e)$
$pp \to \tau \mu$	\mathbf{CMS}	$138{ m fb}^{-1}$	[89]	$m^{ m col}_{ au_h \mu}$	$m_{ au\mu}$
$pp \to \tau e$	\mathbf{CMS}	$138{\rm fb}^{-1}$	[89]	$m^{ m col}_{ au_h e}$	$m_{ au e}$
$pp \to \mu e$	\mathbf{CMS}	$138{\rm fb}^{-1}$	[89]	$m_{\mu e}$	$m_{\mu e}$

O. Sumensari

Is the EFT description justified?

The main caveat of collider bounds on EFTs is that events can have invariant mass in the $\mathcal{O}(1 \text{ TeV})$ range.

Are we indeed probing $\mathscr{C}^{(6)}/\Lambda^2$ with $|\mathscr{C}^{(6)}| \leq 4\pi$ and $\Lambda \gg E$?

The answer depends on **several factors**:

- The **experimental sensitivity** channels with τ 's and MET are harder.
- The **initial quark flavors** (i.e., PDFs)— *light vs. heavy quarks.*
- The **topology** of the underlying **NP** contribution resonant or non-resonant.

The definite answer is model and process-dependent

EFT convergence — <u>resonant</u> mediator

- EFT cross-section computed with different orders in Λ^{-1} and normalized to the full model.
- <u>Example</u>: $Z' \sim (\mathbf{1}, \mathbf{1}, \mathbf{0})$ $\mathcal{L}_{Z'} = -\frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{m_{Z'}^2}{2} Z'_{\mu} Z'^{\mu} + J^{\mu} Z'_{\mu}$ $J_{\mu} = g_{ij}^{(q)} \bar{q}_i \gamma_{\mu} q_j + g_{\alpha\beta}^{(l)} \bar{l}_{\alpha} \gamma_{\mu} l_{\beta}$

$$\hat{\sigma} \propto \left| \mathcal{A}_{\rm SM} + \frac{\mathcal{A}_{6}}{\Lambda^{2}} + \frac{\mathcal{A}_{6\times6} + \mathcal{A}_{8}}{\Lambda^{4}} + \mathcal{O}_{\mathcal{A}}(\Lambda^{-6}) \right|^{2}$$

$$= \underbrace{|\mathcal{A}_{\rm SM}|^{2} + \frac{2\operatorname{Re}\left(\mathcal{A}_{\rm SM}^{*}\mathcal{A}_{6}\right)}{\Lambda^{2}} + \frac{|\mathcal{A}_{6}|^{2}}{\Lambda^{4}}}_{\mathcal{O}_{\mathcal{A}}(\Lambda^{-2})} + \frac{2\operatorname{Re}\left(\mathcal{A}_{\rm SM}^{*}\mathcal{A}_{6\times6} + \mathcal{A}_{\rm SM}^{*}\mathcal{A}_{8}\right)}{\Lambda^{4}} + \frac{2\operatorname{Re}\left(\mathcal{A}_{6}^{*}\mathcal{A}_{6\times6} + \mathcal{A}_{6}^{*}\mathcal{A}_{8}\right)}{\Lambda^{6}} + \frac{|\mathcal{A}_{6\times6}|^{2} + |\mathcal{A}_{8}|^{2}}{\Lambda^{8}} + \dots,$$

$$\underbrace{\mathcal{O}_{\mathcal{A}}(\Lambda^{-4})}_{\mathcal{O}_{\mathcal{A}}(\Lambda^{-4})}$$

[Allwicher, Faroughy, Martines, OS, Wilsch. '24]

EFT convergence — <u>resonant</u> mediator

- EFT cross-section computed with different orders in Λ^{-1} and normalized to the full model.
- <u>Example</u>: $Z' \sim (\mathbf{1}, \mathbf{1}, \mathbf{0})$ $\mathcal{L}_{Z'} = -\frac{1}{4} Z'_{\mu\nu} Z'^{\mu\nu} + \frac{m_{Z'}^2}{2} Z'_{\mu} Z'^{\mu} + J^{\mu} Z'_{\mu}$ $J_{\mu} = g_{ij}^{(q)} \bar{q}_i \gamma_{\mu} q_j + g_{\alpha\beta}^{(l)} \bar{l}_{\alpha} \gamma_{\mu} l_{\beta}$

O. Sumensari

EFT convergence — <u>non-resonant</u> mediator

• EFT cross-section computed with different orders in Λ^{-1} and normalized to the full model.

O. Sumensari
$pp \rightarrow VH$

Channel	Distribution	Collaboration	$N_{\rm obs}$	Luminosity
$pp \rightarrow WW$	$rac{d\sigma}{dp_T^{\ell^{ ext{lead}}}}$	ATLAS	14	$36.1 \text{ fb}^{-1} [33]$
	$rac{dN_{ m ev}}{dm_{e\mu}}$	CMS	11	$35.9 \text{ fb}^{-1} [34]$
$pp \rightarrow WZ$	$rac{d\sigma}{dm_T^{WZ}}$	ATLAS	6	$36.1 \text{ fb}^{-1} [35]$
	$\frac{1}{\sigma} \frac{d\sigma}{dm_{WZ}}$	CMS	5	$137 \text{ fb}^{-1} [36]$
$pp \rightarrow Zh$	$rac{d\sigma}{dp_T^Z}$	ATLAS	5	$140 { m ~fb^{-1}} [37]$
		CMS	3	$138 \text{ fb}^{-1} [38]$
$pp \to Wh$	$rac{d\sigma}{dp_T^W}$	ATLAS	5	$140 \text{ fb}^{-1} [37]$
		CMS	3	$138 \text{ fb}^{-1} [38]$

$$q_i = egin{pmatrix} (V^\dagger u)_{Li} \ d_{Li} \end{pmatrix}$$