On-shell BSM

Gauthier Durieux (CP3 – UCLouvain)

PhysTeV BSM 2025 Les Houches – 28 June

The on-shell toolbox

Spinor formalisms

- $\rightarrow\,$ theories with spins ≥ 1
 - exotic BSM states, gravitons, black holes, etc.
- $\rightarrow\,$ enumeration of kinematic structures
 - massless operator bases
 - · actual massive amplitudes
- $\rightarrow\,$ compact expressions and simple arguments
 - e.g. vector and fermion have same helicity in dipoles: [13][23] two-derivative single scalar theory is trivial: $\sum_{ij} s_{ij} = 0$ Landau-Yang theorem: [12][13][23] antisym. under 2 \leftrightarrow 3
- Analyticity and unitarity
 - $\rightarrow\,$ recursive amplitude construction
 - without gauge & field-redefinition redundancies
 - $\rightarrow\,$ selection rules for (and computations of)
 - · operator anomalous dimensions
 - · EFT matching coefficients
 - ightarrow positivity constraints and S-matrix bootstrap

Spinor formalisms

Massless helicity spinors

As square and angle brackets

$$u_{i^+} = \begin{pmatrix} 0 \\ i \end{bmatrix}$$
, $u_{i^-} = \begin{pmatrix} i \\ 0 \end{pmatrix}$ for massless particle i

Rewritting momenta

$$p^i_\mu \sigma^\mu_{\alpha\dot{lpha}} \equiv p^i_{\alpha\dot{lpha}} = \epsilon_{lphaeta} \ ^{eta} i \rangle [i_{\dot{lpha}}$$
 2-by-2 matrix of rank 1

Trivialising $p_i^2 = \det(p_{\alpha\dot{\alpha}}^i) = \langle ii \rangle [ii]/2 = 0, \ p_i i] = i \rangle [ii] = 0$

$$\langle ii \rangle = \epsilon_{\alpha\beta} i \rangle^{\alpha} i \rangle^{\beta} = 0, \qquad [ii] = \epsilon^{\dot{\alpha}\dot{\beta}} i]_{\dot{\alpha}} i]_{\dot{\beta}} = 0$$

Gauthier Durieux - PhysTeV BSM 2025 - Les Houches - 28 June

[Mangano, Parke '91] [Dreiner, Haber, Martin '08] [Helvang, Huang '13] [Dixon '13] [Schwartz '14] [Cheung '17]

Massless little-group covariance

Little-group transformations leave p_i invariant

Little group includes SO(2) \sim U(1) for massless p_i

Spinors i], i pick up phases proportional $\pm 1/2$

The amplitude picks up a phase proportional to h_i

Massless three points

fully determined by little-group covariance

$$\mathcal{M}(1^{h_1}, 2^{h_2}, 3^{h_3}) = g \begin{cases} [12]^{h_1+h_2-h_3} & [23]^{h_2+h_3-h_1} & [31]^{h_3+h_1-h_2} & \text{for } h > 0\\ \langle 12 \rangle^{-h_1-h_2+h_3} \langle 23 \rangle^{-h_2-h_3+h_1} \langle 31 \rangle^{-h_3-h_1+h_2} & \text{for } h < 0 \end{cases}$$

up to a constant coefficient

$$f^{+}f^{+}s \ [12]$$

$$v^{+}v^{+}s \ [12]^{2}$$

$$f^{+}f^{-}v^{+} \ [13]^{2}/[12] \qquad [g] = 1 - |h|$$

$$v^{+}v^{+}v^{-} \ [12]^{3}/[23][31] \qquad = \sum h_{i}$$

$$t^{+}t^{+}t^{-}\left([12]^{3}/[23][31]\right)^{2}$$

Divide and conquer

Exclude seemingly non-local relation

× $[12][34] = -[13][24] s_{12}/s_{13}$ at d = 6**√** $[12][34] s_{13} = -[13][24] s_{12}$ at d = 8

Counting from Hilbert series

e.g.
$$H_{f^+f^+f^+f^+}(d) = \frac{2d^6 - d^6}{(1 - d^2)^2}$$

[Bradshaw, Chang, Chen, Liu, Luty '22, '23]

Massless higher-point contact terms

Multiple independent structures for given helicities

non-vanishing Lorentz invariants $(s_{ij} \equiv 2 p_i \cdot p_j, \epsilon_{ijkl} \equiv \epsilon_{\mu\nu\rho\sigma} p_i^{\mu} p_j^{\nu} p_k^{\rho} p_l^{\sigma})$

solving · little-group covariance

- momentum conservation
- Schouten identity [12][34] [13][24] + [14][23] = 0

e.g. GR-SM-EFT up to dim-8:

[GD, Machado '19]

$$\begin{array}{rcl} t^{+}t^{+}t^{+}t^{+}: & [12]^{4}[34]^{4} + [13]^{4}[24]^{4} + [14]^{4}[23]^{4} \\ t^{+}t^{+}v^{+}v^{+}: & [12]^{4}[34]^{2}, [12]^{2}[13][14][24][23] \\ t^{+}v^{+}f^{+}f^{-}: & [12]^{2}[13][12] \\ t^{+}f^{+}f^{+}f^{+}f^{+}: & [12]^{2}[13][14][15] \\ & \cdots & \cdots & \cdots \end{array}$$

also from Hilbert series: [Ruhdorfer et al. '19]

Massive spinors

Two massless for one massive $p^i_{\mu}\sigma^{\mu}_{\alpha\dot{\alpha}} = q^i \rangle [q^i + k^i \rangle [k^i = i^J \rangle [i_J$ with $k_i^2 = 0 = q_i^2$, J = 1, 2 $2k^i \cdot q^i = m_i^2$ Little group is now SO(3) \sim SU(2) Spin s from 2s symmetrized spin 1/2

left implicit. e.g. $\langle 1'3^J \rangle [2^K 3^{J'}] + (J \leftrightarrow J')$ written as $\langle 13 \rangle [23]$

Leading high-energy limit is just *unbolding*

Three-point examples:

$$\begin{array}{ll} \textit{ffs} & [12], \ \langle 12 \rangle \\ \textit{vvs} & \langle 12 \rangle^2, \ \langle 12 \rangle [12], \ [12]^2 \\ \textit{ssv} & [3(1-2)3) \equiv [3(p_1-p_2)3) \\ \textit{ffv} & \langle 13 \rangle \langle 23 \rangle, \ \langle 13 \rangle [23], \ [13] \langle 23 \rangle, \ [13] [23] \\ \ldots & \text{counting by spin irreps addition} \end{array}$$

SSB relations from perturbative unitarity

[GD, Kitahara, Shadmi, Weiss '19]

Analyticity and unitarity

Recursive construction

Recursive construction of on-shell amplitudes

bypass unphysical fields, operators, Lagrangians

avoids gauge and field-redefinition redundancies

Positivity constraints

[Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi '06]

Positivity constraints

· Unitarity $S \cdot S^{\dagger} = \mathbb{I}$ with $S = \mathbb{I} + i\mathcal{A}$:

EFT coefficients

as zero-momentum residues of the substracted amplitude

$$c_n = \operatorname{Res}_{s=0} rac{\mathcal{A}(s)}{s^{n+1}}$$
 e.g. $\mathcal{A}_{ab o ab}^{\mathsf{EFT, tree}}(s) = \sum_n c_n s^n$

· Analyticity, dispersion relation

Anomalous dimensions

Anomalous dimensions from cuts

- \cdot In a massless theory, any (log $\mu^2)$ comes with a $(-\log s_l)$
- A dilation $z^{D/2}$ with $D \equiv \sum_i p_i^{\mu} \frac{\partial}{\partial p_i^{\mu}}$ captures all Mandelstam logs in a single $(-\log z)$ and disregards logs of s_l/s_J ratios

• Form factors
$$\mathcal{F} \equiv {}_{out} \langle p_1, \dots, p_m | \mathcal{O}(q) | 0 \rangle_{in}$$
 have all $s_l \equiv (\sum_{i \in I} p_i^{\mu})^2$ Mandelstams positive

· Dilated form factors $\hat{\mathcal{F}}(z) \equiv z^{D/2} \mathcal{F}$ only have singularities at positive z's

at $\sum_k \alpha_k m_k^2 / \sum_l \alpha_l s_l$ in Feynman parameterisation

Non-renormalisation

vanishing tree helicity amp. \Rightarrow vanishing one-loop divergences

define (anti)holomorphic weights $\vec{w} \equiv n \mp h$ renormalisable trees: $\vec{w}_{\text{reno}}^{\text{tree}} \ge 4$ for $n \ge 4$ (except for e.g. Yukawa amps) from cut: $\vec{w}_{FFT}^{\text{loop}} = \vec{w}_{FFT}^{\text{tree}} + \vec{w}_{\text{reno}}^{\text{tree}} - 4$ so $\widetilde{W}_{\text{FFT}}^{\text{loop}} \geq \widetilde{W}_{\text{FFT}}^{\text{tree}}$

(F^3	$F^2 \phi^2$	$F\psi^2\phi$	ψ^4	$\psi^2 \phi^3$	\bar{F}^3	$\bar{F}^2 \phi^2$	$\bar{F}\bar{\psi}^2\phi$	$\bar{\psi}^4$	$\bar{\psi}^2 \phi^3$	$\bar{\psi}^2 \psi^2$	$\bar{\psi}\psi\phi^2 D$	$\phi^4 D^2$	ϕ^6
\checkmark	(w, \bar{w})	(0, 6)	(2, 6)	(2, 6)	(2, 6)	(4, 6)	(6, 0)	(6, 2)	(6, 2)	(6, 2)	(6, 4)	(4, 4)	(4, 4)	(4, 4)	(6, 6)
F^3	(0, 6)			×	×	×			×	×	×	×	×	×	×
$F^2 \phi^2$	(2, 6)				×	×				×	×	×			×
$F\psi^2\phi$	(2, 6)									×				×	×
ψ^4	(2, 6)	×	×			×	×	×	×	×	×	y^2		×	×
$\psi^2 \phi^3$	(4, 6)	×*									y^2				×
\bar{F}^3	(6, 0)			×	×	×			×	×	×	×	×	×	×
$\bar{F}^2 \phi^2$	(6, 2)				×	×				×	×	×			×
$\bar{F}\bar{\psi}^2\phi$	(6, 2)				×									×	×
$\bar{\psi}^4$	(6, 2)	×	×	×	×	×	×	×			×	\bar{y}^2		×	×
$\bar{\psi}^2 \phi^3$	(6, 4)					\bar{y}^2	×*								×
$\overline{\psi}^2 \psi^2$	(4, 4)		×		\bar{y}^2	×		×		y^2	×			×	×
$\bar{\psi}\psi\phi^2 D$	(4, 4)														×
$\phi^4 D^2$	(4, 4)				×					×		×			×
ϕ^6	(6, 6)	×*		×	×		\times^*		×	×		×			

+ angular momentum selection rules

[Jiang, Shu, Xiao, Zheng '20]

Non-interference

Massless four-point tree amplitudes involving transverse bosons have no helicity overlap between dim-4 and dim-6.

A_4	$ h(A_4^{\rm SM}) $	$ h(A_4^{\mathrm{BSM}}) $
VVVV	0	4,2
$VV\phi\phi$	0	2
$VV\psi\psi$	0	2
$V\psi\psi\phi$	0	2
$\psi\psi\psi\psi\psi$	2,0	2,0
$\psi\psi\phi\phi$	0	0
$\phi\phi\phi\phi\phi$	0	0

Interferences, mass- or loop- unsuppressed, are recovered in the azimuthal angle of decay products or through extra radiation.

[Bern, Parra-Martinez, Sawyer '19, '20]

Non-renormalisation at Loops > 1

 $\mathsf{length}(\mathcal{O}_{\mathsf{short}}) < \mathsf{length}(\mathcal{O}_{\mathsf{long}}) - \mathit{Loops}$

only maximal cut, between tree amplitudes, at minimal Loop order

	F^3	$\phi^2 F^2$	$F\phi\psi^2$	$D^2 \phi^4$	$D\phi^2\psi^2$	ψ^4	$\phi^3 \psi^2$	ϕ^6		
F^3		\times_1	(2)	\times_2	\times_2	\times_2	\times_3	\times_3	\cdot	\cdot
$\phi^2 F^2$							(2)	\times_2		$\cdot \mathbf{Q} \mathbf{Q}$
$F\phi\psi^2$							\times_1	\times_3	(c) `	(d)
$D^2 \phi^4$							\times_1	\times_2		
$D\phi^2\psi^2$							\times_1	(3)		
ψ^4							(2)	(4)		
$\phi^3 \psi^2$								(2)		
ϕ^6										

Matching UV theories onto IR EFTs

Dispersive matching

(for massless EFTs)

 \cdot equate $\mathcal{F}^{\mathsf{EFT}}$ and $\mathcal{F}^{\mathsf{UV}}$ order by order in the zero-momentum expansion · dilate (with $z^{D/2}$) and enforce $\operatorname{Res}_{z=0} \frac{\hat{\mathcal{F}}^{\mathsf{EFT}}(z)}{z^{n+1}} = \operatorname{Res}_{z=0} \frac{\hat{\mathcal{F}}^{\mathsf{UV}}(z)}{z^{n+1}}$ • EFT: Res_{z=0} $\frac{\mathcal{F}^{\text{EFT}}(z)}{z^{n+1}} = c_n \operatorname{poly}_n(s_l)$ with $\mathcal{F}_{\text{tree}}^{\text{EFT}} = \sum_k c_k \operatorname{poly}_k(s_l)$ $\cdot \text{ UV: } \operatorname{Res}_{z=0} \frac{\hat{\mathcal{F}}^{\text{UV}}(z)}{z^{n+1}} = \oint_{z=0} dz \ \frac{\hat{\mathcal{F}}^{\text{UV}}(z)}{z^{n+1}} = \left[\sum_{n=0}^{\infty} \operatorname{Res}_{z=0} + \int_{\infty}^{\infty} \operatorname{Disc}_{z=0} + \int_{\infty}^{\infty} \left[\frac{\hat{\mathcal{F}}^{\text{UV}}(z)}{z^{n+1}}\right] \frac{\hat{\mathcal{F}}^{\text{UV}}(z)}{z^{n+1}} = \left[\sum_{n=0}^{\infty} \operatorname{Res}_{z=0} + \int_{\infty}^{\infty} \operatorname{Disc}_{z=0} + \int_{\infty}^{\infty} \operatorname$ $\frac{1}{z s_I - M_I^2} \log(M_J^2 - z s_J)$ Im z EFT matching from just cuts! → Rez <u>M</u>1⁻ $\frac{\hat{\mathcal{F}}^{\rm UV}(z)}{z^{n+1}}$

Simple toy $\Phi \phi^3$ example

- · amplitudes used instead of form factors
- $\cdot\,$ all EFT orders obtained at once
- nothing to know about —or compute in— the EFT (in dimreg)
- · fewer legs and loops

Magic zeros revisited

[Arkani-Hamed, Harigaya '21] [Craig, Garcia Garcia, Vainshtein, Zhang '21] [Delle Rose, von Harling, Pomarol '22] [Hook '22]

Zero motching coefficients without standard symmetry explanation

$$\underline{E}_{\underline{S}}$$
 vector-like leptons $L^{\nu}(\underline{1},\underline{2},\cdot 1/2) \ N \sim (\underline{1},\underline{1},0)$ to $\frac{[\underline{e}_{\underline{S}}][\underline{\ell}_{\underline{S}}]}{N^2}$
 $\underline{L}^{+} \longrightarrow \underbrace{N}_{\underline{H}^{+}} \xrightarrow{-h^{\circ}}_{\underline{H}^{+}}$ the possible choicer X : picks up messers from propagator
 $Y_{\underline{H}^{+}} \xrightarrow{N}_{\underline{H}^{+}} \xrightarrow{-h^{\circ}}_{\underline{H}^{+}}$ the possible choicer $X_{\underline{V}}$: picks up messers from propagator
 $Y_{\underline{V}}$: picks up momente "
chirolity diched by
the STT ones ($\underline{\ell} \neq \underline{e}$) focus on this
On-stell amplitude cuts:
(in the unbroken EW phase

$$O\left(\frac{1}{M_{\rm p}^2}\right) \quad O\left(\frac{1}{M_{\rm p}^2}\right)$$

Contributing both to 1- & 2-particle cuts
but only at order
$$\frac{1}{M_N} \frac{1}{M_L}$$
 i.e. dim-8.

The easy way: decouple first N and match at 3-point:
$$\frac{1}{8}$$
 then decouple L

Conclusions

Recent on-shell additions to the BSM toolbox!

Simpler computations!

Better understanding!

There's more!

exotic phenomena continuous spin particles magnetic monopoles

interplay with QI

not on-shell field geometry

Hilbert series

not (much) BSM yet double copy hidden zeros

not (fully) understood on-shell evanescent/gauge-variant/EOM-redundant operators renormalisation group equation anomalies