

Interpolating Amplitudes

Matthias Kerner

Les Houches 19th June 2025

Why (I am interested in) amplitude interpolation

NLO QCD corrections to HH and HJ production

Borowka, Greiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke 1604.06447 Jones, MK, Luisoni 1802.00349

based on numerical integration of 2-loop integrals

• slow, runtime per phase-space point: - median 2h on GPU

- up to 2d, may not reach desired precision • for fixed-order results: optimized phase-space sampling based on unweighed LO event \rightarrow can generate FO results using only 665 phase-space points \rightarrow can not be directly interfaced to parton-shower MC,

 \rightarrow amplitude interpolation

Why (I am interested in) amplitude interpolation

NLO QCD corrections to HH and HJ production

Borowka, Greiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke 1604.06447 Jones, MK, Luisoni 1802.00349

based on numerical integration of 2-loop integrals

- slow, runtime per phase-space point: median 2h on GPU
- for fixed-order results: optimized phase-space sampling based on unweighed LQ event \rightarrow can generate FO results using only 665 phase-space points \rightarrow can not be directly interfaced to parton-shower MC,

 \rightarrow amplitude interpolation

Current project: 2-loop corrections to $t\bar{t}H$ production

- first results: Agarwal, Heinrich, Jones, MK, Klein, Lang, Magerya, Olsson 2402.033
 - N_f contributions to $q\bar{q} \rightarrow t\bar{t}H$,
 - only 1d and 2d splices in phase space
- full 2-loop corrections & pheno applications
 - \rightarrow need integration over 5-dimensional phase-space
 - \rightarrow construct interpolation framework; try to minimize number of an plitude results required $\hat{\rho}$

Bresó, Heinrich, Margery, Olsson 2412.09534

HH — Grid interpolation

2-dimensional grid interpolation (\hat{s}, \hat{t})

Problems during construction of grid:

- interpolation can enhance numerical uncertainties
- input data not evaluated on equidistant grid points

Details of grid interpolation:

- interpolation done in 2 steps:
 - 1. choose equidistant grid points, estimate result at each grid point with least-square fit to linear function of amplitude results in vicinity \hat{s},\hat{t}
 - 2. Clough-Tocher interpolation (as implemented in SciPy) to estimate amplitude at arbitrary sampling points
 - \rightarrow reduces sensitivity to uncertainties of input-data points
- input parameters $x = f(\beta(\hat{s})), \quad c_{\theta} = |\cos \theta| = \left| \frac{\hat{s} + 2\hat{t} 2m_H^2}{\hat{s}\beta(\hat{s})} \right|$
 - \rightarrow nearly uniform distribution of phase space points in $(x, c_{\theta}) \in f(\beta)$ chosen according to cumulative distribution of points in orig

HJ [Campillo Aveleira, Heinrich, MK, Kunz 2409.05728] (x, c)amplitude regression using neural network (MLP), avoid divergences in IRC limits by multiplication of amplitude with $\beta^2(1-\beta)(1-\cos^2\theta)$ where $\beta = \frac{s-m_H^2}{s+m_H^2}$

Heinrich, Jones, MK, Luisoni, Vryonidou 1703.09252

$$\left| \frac{2}{H} \right|, \quad \text{with} \quad \beta = \left(1 - \frac{4m_H^2}{\hat{s}} \right)^{\frac{3}{2}}$$

 $\in [0,1]^2 \quad \text{if} \quad f(\beta)$
ginal calculation

$$(c_{\theta})(x, c_{\theta})$$

Interpolating Amplitudes [Bresó, Heinrich, Margery, Olsson 2412.09534

Methods [.]	Test functions:	
 Polynomial interpolation 	• <i>f</i> ₁ :	$qar{q}$.
 B-splines 	• <i>f</i> ₂ :	$q\bar{q}$.
 Sparse grids 	• <i>f</i> ₃ :	<i>88</i> -
 Machine Learning (MLP, L-GATr) 	• <i>f</i> ₄ :	88
	• f_5 :	<i>88</i> -

Approximation error based on L^1 -norm, target for $\varepsilon < 1\%$:

$$L^1[f] = \left(\int |f(\vec{x})|^p \,\mathrm{d}\vec{x}\right)^{1/p}$$

- $\rightarrow t\bar{t}H$ @ 0L
- @ 1L, with Coulomb singularity subtracted $\rightarrow t\bar{t}H$
- $\rightarrow t\bar{t}H$ @ 0L
- $\rightarrow t\bar{t}H$ @ 1L, with Coulomb singularity subtracted:

$$\rightarrow Hg \quad @ \ 1L \qquad \qquad a_4 = 2 \operatorname{Re} \left[\langle \mathcal{M}_0^{ggt\bar{t}H} | \mathcal{M}_1^{ggt\bar{t}H} \rangle - \frac{\pi^2}{\beta_{t\bar{t}}} \langle \mathcal{M}_0^{ggt\bar{t}H} | \mathbf{T}_{t\bar{t}} | \right]$$

Approximation error of f_{-}

ΤU

Optimising simulations for diphoton production at Aylett-Bullock, Badger, Moodie 2106.09474 hadron colliders using amplitude neural networks

partition phase-space into IRC regions according to FKS and train one NN for each region \rightarrow ensemble of neural networks

3 hidden layers: 30-40-30 100k training points

$$d\sigma = \sum_{i,j} S_{i,j} d\sigma \quad \text{with} \quad S_{i,j} = \frac{1}{D_1 s_{ij}}, \quad D_1 = \sum_{i,j \in \mathcal{P}_{\text{FKS}}} \frac{1}{s_{ij}}$$

$$=\frac{NN - NJet}{NJet} + \mathcal{O}((NN - NJet)^2)$$

 \rightarrow still results in good predictions of cross sections

A factorisation-aware Matrix element emulator

Ansatz for fit using NN:

reliable results also in IRC limits \rightarrow

Maître, Truong 2107.06625

Summary

- Multiple Method:
 - classical methods
 - (polynomial interpolation, splines, sparse grids)
 - Machine learning
- Different strategies to deal with singularities:
 - subtract singular terms before fit
 - fit coefficients of singular terms
 - ensembles of neural networks
 - avoid by multiplication with appropriate factors

11

Summary

- Multiple Method:
 - classical methods
 - (polynomial interpolation, splines, sparse grids)
 - Machine learning
- Different strategies to deal with singularities:
 - subtract singular terms before fit
 - fit coefficients of singular terms
 - ensembles of neural networks
 - avoid by multiplication with appropriate factors

& Open Questions

- Which method works best for a given use case?
- Which precision is required?
 (on amplitude / cross section)
- How to deal with uncertainties?
 (of input data; uncertainties due to interpolation)
- How can we incorporate parametric dependencies? (anomalous couplings, scale dependence, ...)

• ...

12