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Why (I am interested in) amplitude interpolation

2

NLO QCD corrections to HH and HJ production
Borowka, Greiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke 1604.06447 
Jones, MK, Luisoni  1802.00349

based on numerical integration of 2-loop integrals  
•  slow, runtime per phase-space point:  - median 2h on GPU  
                                                 - up to 2d, may not reach desired precision 

•  for fixed-order results: optimized phase-space sampling based on unweighed LO event 
→ can generate FO results using only 665 phase-space points 
→ can not be directly interfaced to parton-shower MC,  

→ amplitude interpolation

https://arxiv.org/pdf/1604.06447
https://arxiv.org/pdf/1802.00349
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NLO QCD corrections to HH and HJ production
Borowka, Greiner, Heinrich, Jones, MK, Schlenk, Schubert, Zirke 1604.06447 
Jones, MK, Luisoni  1802.00349

based on numerical integration of 2-loop integrals  
•  slow, runtime per phase-space point:  - median 2h on GPU  
                                                 - up to 2d, may not reach desired precision 

•  for fixed-order results: optimized phase-space sampling based on unweighed LO event 
→ can generate FO results using only 665 phase-space points 
→ can not be directly interfaced to parton-shower MC,  

Current project: 2-loop corrections to  production 
•  first results: Agarwal, Heinrich, Jones, MK, Klein, Lang, Magerya, Olsson 2402.03301  
   -  - contributions to ,  
   - only 1d and 2d splices in phase space 

•  full 2-loop corrections & pheno applications 
 → need integration over 5-dimensional phase-space 
 → construct interpolation framework; try to minimize number of amplitude results required 
                  Bresó, Heinrich, Margery, Olsson 2412.09534
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Figure 4: Example diagrams for qq̄ ! tt̄H at two-loop level proportional to nl or nh.

Massive quarks are depicted using solid (blue) bold lines, while massless quarks are repre-

sented by lighter (grey/red) solid lines. The colour factors correspond to applying the first

colour projector from eq. (2.24).

solved by Ratracer through replaying the trace in a parallelized manner and using finite

field methods. Note that finite field methods used for function reconstruction as a way of

solving IBP equations is by now an established practice, pioneered in Refs. [75, 76]; our

usage however does not require function reconstruction, only rational number reconstruc-

tion and the Chinese remainder theorem. Our setup allows us to compute reductions in

around two CPU minutes for the two-loop amplitude, and under a second for the one-loop

amplitude on a desktop CPU for most points. Overall this reduction method is fast enough,

in the sense that we are more constrained by the evaluation of the master integrals.

– 13 –

Why (I am interested in) amplitude interpolation

https://arxiv.org/pdf/1604.06447
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Monte Carlo Interface
Median 2 GPU hours per phase-space point 
Can not put directly into a Monte Carlo 
But: Virtual matrix element depends only on        (fixed              ) 
Can build 2D grid of our phase-space points and interpolate

ŝ, t̂ mT ,mH

3741 events used to construct grid for POWHEG/MG5_aMC@NLO

Parametrisation:

Choose          according to cumulative distribution function of phase 
space points used in the original calculation 
Obtain nearly uniform distribution in            unit square 

Interpolate with Clough-Tocher using the SciPy package

f(�)

(x, c✓)

Clough, Tocher 65

x = f(�(ŝ)), c✓ = | cos ✓ | =
����
ŝ+ 2t̂� 2m2

H

ŝ�(ŝ)

���� , � =

✓
1� 4m2

H

ŝ

◆ 1
2
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HH — Grid interpolation

4

Problems during construction of grid: 
• interpolation can enhance numerical uncertainties 
• input data not evaluated on equidistant grid points

 → nearly uniform distribution of phase space points in                     if               
     chosen according to cumulative distribution of points in original calculation 

(x, c✓) 2 [0, 1]2 f(�)

• input parameters

• interpolation done in 2 steps: 
1. choose equidistant grid points, estimate result at each grid point with  

least-square fit to linear function of amplitude results in vicinity 
2. Clough-Tocher interpolation (as implemented in SciPy)  

to estimate amplitude at arbitrary sampling points 
   → reduces sensitivity to uncertainties of input-data points

with

0.5 < |cos ✓| < 0.6
<latexit sha1_base64="EAVHP1Cz7HPjtVMjllATga1/5+g="></latexit><latexit sha1_base64="EAVHP1Cz7HPjtVMjllATga1/5+g="></latexit><latexit sha1_base64="EAVHP1Cz7HPjtVMjllATga1/5+g="></latexit><latexit sha1_base64="EAVHP1Cz7HPjtVMjllATga1/5+g="></latexit>

Details of grid interpolation:

2-dimensional grid interpolation (ŝ, t̂)
<latexit sha1_base64="Q/y6Z/4pwMNR1BGMfr3Qkl/8DNI="></latexit><latexit sha1_base64="Q/y6Z/4pwMNR1BGMfr3Qkl/8DNI="></latexit><latexit sha1_base64="Q/y6Z/4pwMNR1BGMfr3Qkl/8DNI="></latexit><latexit sha1_base64="Q/y6Z/4pwMNR1BGMfr3Qkl/8DNI=">AAADeHicjVJbaxNBFP6S9dLGSxN99GU1iCmEsCmC9kEoeH0RKpi20JQyu52mS/bGzKS1hv4UX/U3+Vv0wW9ONwVbpM4ye85855zvXGbiKkuti6KfjWZw4+at20vLrTt3791faXcebNlyZhI9SsqsNDuxsjpLCz1yqcv0TmW0yuNMb8fT196+fayNTcviszut9F6uJkV6mCbKEdpvd3rjI+VC2x/3RXGr++1uNIhkhVeVYa10Ua/NstPoYYwDlEgwQw6NAo56BgXLbxdDRKiI7WFOzFBLxa5xhhZjZ/TS9FBEp/xPeNqt0YJnz2klOmGWjNswMsRT7nfCGNPbZ9XULeVv7q+CTf6ZYS7MvsJTypiMy8L4kbjDET2ui8xrz0Ut/xP5heg5dl33Dod4KV2n7KMSxM8jucj3hhZDbCqWEG/Fc0KOWM7HnFRBOWKl/jYWDKFM5oBSidTCUtSMinyG0t+Sr6fFXGNaNU5k/rn07ePmxN8T32JFXvccltyebTEbj/e5F2dDbX4RdUbL5Ynw4xscXn5xV5XR2mB9MPz0vLvxqn6MS3iEJ+jxwb3ABj5gk60nLPsbvuNH81fwOHgWrJ67Nht1zEP8tYK1PwlJsOY=</latexit>
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Heinrich, Jones, MK, Luisoni, Vryonidou 1703.09252

HJ [Campillo Aveleira, Heinrich, MK, Kunz 2409.05728]
amplitude regression using neural network (MLP),
avoid divergences in IRC limits by multiplication of amplitude with                               where 

stored

� =
s � m

2
H

s + m
2
H

, cos ✓ =
t � u

s � m
2
H

, M0, M1, M2. (2.13)

To interpolate the virtual amplitudes for each channel we used a neural network trained

on the grid, where we used 30% of the data points as a validation set. For the training

of the network we multiplied the coe�cients M0, M1 and M2 with �
2(1��)(1� cos2 ✓)

and divided by the largest value in the grid. This guarantees that the grid for the neural

network training has values in [�1, 1] and is flattened at the phase space boundaries.

The architecture of each network is composed of three dense layers with 200, 20 and

20 nodes, respectively. The setup is implemented using Keras [100] to produce the

models in combination with a modified version of Keras2cpp [101] to save them such

that they can be loaded from C++. We built a C++ function where, for each channel,

the models are loaded. This function is called in the POWHEG-BOX-V2 to obtain the

two-loop virtual amplitude at any given phase space point.

The one-loop amplitudes contributing to the virtual corrections where the Higgs cou-

ples to gluons, denoted by M
1L
Hg

, were computed by GoSam, where the interference

M
1L
Hg

· M0L
Hg

is straightforward, while we had to slightly modify GoSam in order to

compute the M
1L
Hg

· M1L
f

interference.

One full run takes roughly 320 CPU-days, depending on the used hardware. The 320

CPU-days refer to a cluster which consists of Intel Xeon Gold 6230 processors with a

frequency of 2.1 GHz. It is also worth mentioning that using either ct = 0 or cg = 0

can drastically reduce the number of CPU-hours, since this greatly reduces the number

of diagrams to be evaluated.

Validation

In order to allow for comparisons and cross checks, we implemented both the mt ! 1

limit as well as the full SM amplitudes at NLO. We checked that taking mt ! 1 in all

diagrams and setting cg = 0 agrees with the SM calculation in the HTL. Furthermore,

using the fact that in the HTL the SM reduces to diagrams with an e↵ective Higgs-

gluon coupling given by cg,HTL = 2/3, see e.g. [102], and that the HEFT diagrams with

a gluon-Higgs coupling reduce to just HTL diagrams without any top-loops, we checked

that ctMf (mt ! 1) + cgMHg(mt ! 1) = (2/3ct + cg)/cg,HTL · MHTL. Furthermore,

we have validated the interpolation grid that we implemented in the Powheg setup by

comparing the grid-based result with the result reconstructed directly from the points

obtained from the numerical evaluation of the two-loop amplitude. The di↵erences

were of the order of the Monte Carlo uncertainties. We also interpolated the Born

amplitude of the grid and compared it to the analytical results. Of course, we also
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Methods: 
•  Polynomial interpolation 
•  B-splines 
•  Sparse grids 
•  Machine Learning (MLP, L-GATr)

Test functions: 
•    
•   , with Coulomb singularity subtracted 
•    
•   , with Coulomb singularity subtracted: 
•   

f1 : qq̄ → tt̄H @ 0L
f2 : qq̄ → tt̄H @ 1L
f3 : gg → tt̄H @ 0L
f4 : gg → tt̄H @ 1L
f5 : gg → Hg @ 1L

Approximation error based on -norm, target for :L1 ε < 1 %

The same slices for the function f3 are:

0.00.0
x1 æ

1.0Ω x2

1.0

0.00.0
x1 æ

1.0Ω x4

1.0

Test function f4:
One-loop amplitude contributing to gg ! tt̄H, taken as a 5-dimensional function,
with the Coulomb-type singularity subtracted in the same way as for a2, i.e.

a4 = 2Re


hM

ggtt̄H

0 |M
ggtt̄H

1 i �
⇡
2

�tt̄

hM
ggtt̄H

0 |Ttt̄|M
ggtt̄H

0 i

�
, (2.19)

f4 = a4 ⇥

����
d�tt̄H

d(fracstt̄ , ✓H , ✓t,'t)

����⇥
1

2ŝ

d⇢gg
d�2

⇥ Jtt̄H , (2.20)

where �tt̄ is given in eq. (2.16), and the rest is the same as for f3.

The amplitude a4 possesses the same symmetries as a3 and a1, given in eq. (2.13).

Slices of the amplitude a4 in x1–x2 and x1–x4 space are as follows:

0.00.0
x1 æ

1.0Ω x2

1.0

0.00.0
x1 æ

1.0Ω x4

1.0

The same slices for the function f4 are:

0.00.0
x1 æ

1.0Ω x2

1.0

0.00.0
x1 æ

1.0Ω x4

1.0

Test function f5:
Leading-order (one-loop) amplitude for gg ! Hg, taken as a 2-dimensional function,

a5 = hM
ggHg

1 |M
ggHg

1 i, f5 = a5 ⇥
d�Hg

d✓H
⇥

1

2ŝ

d⇢gg
d�2

⇥ JHg, (2.21)
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2.2 Our goal

Assume that we can calculate most parts of a squared amplitude A quickly and precisely,
but one part, e.g. a subleading order in ↵s, is slow or expensive to evaluate. Let us denote
this part as a : (0; 1)d ! R. We aim to approximate a by some function ea, from the
knowledge of the values of a at some data points ~x1, . . . , ~xn: ai ⌘ a(~xi). We are interested
in algorithms to choose ~xi and to construct ea such that it is “close enough” to a, while
requiring as few data points as possible, as to minimize the expensive evaluations of a.

2.3 How to define the approximation error?

There are different ways to precisely define what “close enough” means, and no single
definition works equally well for all observables and phase-space regions of interest, so a
choice of what to prioritize must be made.

In this paper we choose d�/d~x as the probability density of interest, and define the
approximation error as the distance between probability densities d�/d~x based on ea and a,
measured via the L

1 norm:1

" =
|| ef � f ||1

||f ||1
, where f(~x) ⌘ a(~x)

1

2ŝ

����
d(�, ⇢)

d~x

����
| {z }
⌘weight w(~x)

. (2.6)

The choice of the L
1 norm ensures that this quantity is independent of the choice of vari-

ables ~x. In statistics, it is known as total variation distance (up to an overall normalization).
This distance weighs different phase-space regions proportional to their contribution to the
total cross section (via the factor w), and guarantees that for any phase-space subregion R,
using ea(~x) instead of a(~x) will result in the error of �R being no more than "

�
↵s

2⇡

�
k
||f ||1.

We target " of at most 1%.
Note that the precision of the total cross section comes at the expense of precision

in tails of differential distributions: for parts of the phase space that do not contribute
much to the total cross section, such as the very-high-energy region, only low precision is
guaranteed by a bound on ". An alternative definition of the error, " = max |ea/a�1|, would
ensure equal relative precision for all bins of any differential distribution, but would come
at the expense of the interpolation spending most effort on phase-space regions where only
few (or zero) experimental data points can be expected at the LHC. This is the trade-off
involved in error target choices; to apply the methods we study, each application would
need to choose its own appropriate error measure.

2.4 How to prioritize different phase-space regions?

Summarizing Section 2.3, we approximate a(~x), and encode the relative importance of
different phase-space regions into w(~x). But can we incorporate this importance information
to improve the approximation procedure? There are multiple options:

1. Instead of constructing an approximation for a(~x) directly, we can construct an ap-
proximation ef(~x) for f(~x) ⌘ a(~x)w(~x), and then set ea(~x) = ef(~x)/w(~x).

1
Here and throughout, we define the Lp

-norm ||f ||p as
�R

|f(~x)|p d~x
�1/p

.
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Interpolating Amplitudes [Bresó, Heinrich, Margery, Olsson 2412.09534]

<latexit sha1_base64="mxjCFMq4lqXQ2hpU52k4xSpuySU="></latexit>

L1[f ] =

✓Z
|f(~x)|p d~x

◆1/p

https://arxiv.org/pdf/2412.09534
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Polynomial Interpolation (1D):

Runge Phenomenon can be avoided by choosing Chebyshev nodes

interpolation nodes xi. It can be written in the Lagrange form as

ef(x) =
nX

i=1

fi li(x), li(x) ⌘
Y

j 6=i

x� xj

xi � xj
, (3.1)

or slightly rewritten in the barycentric form [19] as:

ef(x) =

nX

i=1

wi

x� xi
fi

nX

i=1

wi

x� xi

, wi =
Y

j 6=i

1

xi � xj
. (3.2)

The barycentric interpolation formula is general enough that with an appropriate choice of
the weights wi, any rational interpolation can be expressed by it; the weights given here,
however, correspond to the purely polynomial interpolation of eq. (3.1).2 This is our form
of choice for evaluation due to its numerical stability and simplicity.

The error of a polynomial approximation is given by

f(x)� ef(x) = f
(n)(⇠)

n!

nY

i=1

(x� xi), (3.3)

where ⇠ is some function of x. To minimize this error a priori without the precise knowledge
of f (n), one can choose the nodes xi such that they would minimize

Q
i
(x � xi) over the

domain of interest. Doing so is important because a naive choice of equidistant nodes leads
to the Runge phenomenon [21]: the approximation error explodes close to the boundaries,
increasingly worse with higher degree of the polynomial. E.g. for 10 nodes on the interval
of [�1; 1]:

-1.0 -0.5 0.0 0.5 1.0-0.010-0.0050.000

Q
i(
x
�

x
i)

1
3.1 Chebyshev nodes of the first kind

The product
Q

i
(x � xi) is minimized in the sense of the infinity norm by the Chebyshev

nodes of the first kind, which are traditionally given for the domain [�1; 1] as

xi = cos

✓
2i� 1

2n
⇡

◆
, i = 1, . . . , n. (3.4)

These nodes achieve a uniform
Q

i
(x� xi) over the interval:

-1.0 -0.5 0.0 0.5 1.0-0.0020.0000.002

Q
i(
x
�

x
i)

1
2
Rational interpolation methods, specifically of the non-linear kind, such as the AAA algorithm [20],

have established themselves as the most efficient one-dimensional interpolation methods, but generalizations

to many dimensions are not developed well enough for us to consider them.

– 12 –

interpolation nodes xi. It can be written in the Lagrange form as

ef(x) =
nX

i=1

fi li(x), li(x) ⌘
Y

j 6=i

x� xj

xi � xj
, (3.1)

or slightly rewritten in the barycentric form [19] as:

ef(x) =

nX

i=1

wi

x� xi
fi

nX

i=1

wi

x� xi

, wi =
Y

j 6=i

1

xi � xj
. (3.2)

The barycentric interpolation formula is general enough that with an appropriate choice of
the weights wi, any rational interpolation can be expressed by it; the weights given here,
however, correspond to the purely polynomial interpolation of eq. (3.1).2 This is our form
of choice for evaluation due to its numerical stability and simplicity.

The error of a polynomial approximation is given by

f(x)� ef(x) = f
(n)(⇠)

n!

nY

i=1

(x� xi), (3.3)

where ⇠ is some function of x. To minimize this error a priori without the precise knowledge
of f (n), one can choose the nodes xi such that they would minimize

Q
i
(x � xi) over the

domain of interest. Doing so is important because a naive choice of equidistant nodes leads
to the Runge phenomenon [21]: the approximation error explodes close to the boundaries,
increasingly worse with higher degree of the polynomial. E.g. for 10 nodes on the interval
of [�1; 1]:

-1.0 -0.5 0.0 0.5 1.0-0.010-0.0050.000

Q
i(
x
�

x
i)

1
3.1 Chebyshev nodes of the first kind

The product
Q

i
(x � xi) is minimized in the sense of the infinity norm by the Chebyshev

nodes of the first kind, which are traditionally given for the domain [�1; 1] as

xi = cos

✓
2i� 1

2n
⇡

◆
, i = 1, . . . , n. (3.4)

These nodes achieve a uniform
Q

i
(x� xi) over the interval:

-1.0 -0.5 0.0 0.5 1.0-0.0020.0000.002

Q
i(
x
�

x
i)

1
2
Rational interpolation methods, specifically of the non-linear kind, such as the AAA algorithm [20],

have established themselves as the most efficient one-dimensional interpolation methods, but generalizations

to many dimensions are not developed well enough for us to consider them.

– 12 –

interpolation nodes xi. It can be written in the Lagrange form as

ef(x) =
nX

i=1

fi li(x), li(x) ⌘
Y

j 6=i

x� xj

xi � xj
, (3.1)

or slightly rewritten in the barycentric form [19] as:

ef(x) =

nX

i=1

wi

x� xi
fi

nX

i=1

wi

x� xi

, wi =
Y

j 6=i

1

xi � xj
. (3.2)

The barycentric interpolation formula is general enough that with an appropriate choice of
the weights wi, any rational interpolation can be expressed by it; the weights given here,
however, correspond to the purely polynomial interpolation of eq. (3.1).2 This is our form
of choice for evaluation due to its numerical stability and simplicity.

The error of a polynomial approximation is given by

f(x)� ef(x) = f
(n)(⇠)

n!

nY

i=1

(x� xi), (3.3)

where ⇠ is some function of x. To minimize this error a priori without the precise knowledge
of f (n), one can choose the nodes xi such that they would minimize

Q
i
(x � xi) over the

domain of interest. Doing so is important because a naive choice of equidistant nodes leads
to the Runge phenomenon [21]: the approximation error explodes close to the boundaries,
increasingly worse with higher degree of the polynomial. E.g. for 10 nodes on the interval
of [�1; 1]:
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3.1 Chebyshev nodes of the first kind

The product
Q
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(x � xi) is minimized in the sense of the infinity norm by the Chebyshev

nodes of the first kind, which are traditionally given for the domain [�1; 1] as

xi = cos

✓
2i� 1

2n
⇡

◆
, i = 1, . . . , n. (3.4)

These nodes achieve a uniform
Q

i
(x� xi) over the interval:
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Q
i(
x
�

x
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1
2
Rational interpolation methods, specifically of the non-linear kind, such as the AAA algorithm [20],

have established themselves as the most efficient one-dimensional interpolation methods, but generalizations

to many dimensions are not developed well enough for us to consider them.
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1
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Polynomial Interpolation (Multiple dimensions):

3.4 Approximation error scaling

It is known that polynomial interpolation at Chebyshev nodes is logarithmically close to
the best polynomial interpolation of the same degree [17]. The approximation error itself
depends on how smooth the function f is [18, 22, 23]. If f has ⌫ � 1 continuous derivatives
and the variation of f (⌫) is bounded, then

||f � ef ||2 
4 ||f (⌫)

||1

⇡⌫(n� ⌫)⌫
, for n > ⌫. (3.9)

If f is analytic, and can be analytically continued to an ellipse in the complex plane with
focal points at ±1 and the sum of semimajor and semiminor axes ⇢ (a Bernstein ellipse),
then

||f � ef ||2 
4M⇢

�n

⇢� 1
, where M = max |f(x)| in the ellipse. (3.10)

3.5 Gauss nodes

Closely related to Chebyshev nodes, and often considered superior, are Gauss nodes and
Gauss–Lobatto nodes, which are the location of zeros and extrema (respectively) of the
Legendre polynomials. These have the advantage that a quadrature built on them (Gauss

quadrature) is exact for polynomials up to degree 2n � 1, while the same for Chebyshev
nodes (Clenshaw–Curtis quadrature) is only exact for polynomials up to degree n � 1. In
practice, however, the approximation error of both is very close [24, 25], and since Gauss
nodes are much harder to compute compared to eq. (3.4), we do not consider them further.

3.6 Multiple dimensions

The simplest generalization to multiple dimensions is to take the set of nodes {~xi} to be
the outer tensor product of the Chebyshev nodes of eq. (3.4) for each dimension,

{~xi} = {xi1}⌦ · · ·⌦ {xid}, (3.11)

with possibly different node count in each dimension, ni. This corresponds to interpolation
via nested application of eq. (3.2), or via the decomposition

ef(~x) =
n1X

i1=1

· · ·

ndX

id=1

ci1...id Ti1(x1) · · ·Tid
(xd). (3.12)

A detailed study of the interpolation error of this construction is presented in [26]. Roughly
speaking, it is similar to eq. (3.9) and eq. (3.10), except instead of n one must use ni, which
are of the order of d

p
n, leading to progressively slower convergence as d increases. This is

known as the curse of dimensionality [27].

3.7 Dimensionally adaptive grid

The tensor product construction is fairly rigid in that it allows for no local refinement;
only the per-dimension node counts ni can be tuned. Such tuning is sometimes referred
to as dimensional adaptivity, and it can be beneficial. To examine that, let us inspect
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3.2 Chebyshev polynomials

Corresponding to these nodes are the Chebyshev polynomials of the first kind :

Tk(x) = cos(k arccos(x)). (3.5)

Specifically, eq. (3.4) are the zeros of Tn(x). These polynomials are orthogonal with respect
to the weight 1/

p
1� x2:

Z 1

�1

Tn(x)Tm(x)
p
1� x2

dx =

8
>><

>>:

⇡ if n = m = 0,

⇡/2 if n = m 6= 0,

0 if n 6= m.

(3.6)

Note that the nodes in eq. (3.4) are nothing more than equidistant points in � = arccos(x),
and the corresponding polynomials are simply an even Fourier series in �. This is why a
transformation from the function values {fi} to the coefficients of the decomposition into
Chebyshev polynomials {ci},

ef(x) =
X

i

ci Ti(x), (3.7)

is just a Fourier transform (specifically, a discrete cosine transform). Still, for interpola-
tion purposes, the barycentric form of eq. (3.2) is preferable, since both eq. (3.7) and the
monomial form suffer from rounding errors that prevent their usage for n & 40.

3.3 Chebyshev nodes of the second kind

A related set of points that avoids the Runge phenomenon is Chebyshev nodes of the second

kind (a.k.a. Chebyshev–Lobatto nodes), traditionally given as

xi = cos

✓
i� 1

n� 1
⇡

◆
, i = 1, . . . , n. (3.8)

Unlike eq. (3.4), these points are not located at the zeros of Tn(x), but rather at the extrema
and the end points, with the advantage of being nested: the set of n of these is exactly
contained in the set of 2n � 1. This comes at the price of

Q
i
(x � xi) not being uniform

over the interval:

-1.0 -0.5 0.0 0.5 1.0-0.0040.0000.004

Q
i(
x
�

x
i)

1The property of being nested is important for adaptive interpolation constructions, because
larger grids can reuse the results of smaller ones that they contain.

Unfortunately the inclusion of the end points can make this construction impractical
for scattering amplitudes. For example, f2 can not be evaluated at exactly x2 = 0 due to
loss of numerical precision, and evaluation at x1 = 1 is possible, but best avoided, because
evaluation time typically grows when approaching this boundary.
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Chebyshev polynomials

Chebyshev nodes 
for each dimension:

3.4 Approximation error scaling
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then
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3.5 Gauss nodes

Closely related to Chebyshev nodes, and often considered superior, are Gauss nodes and
Gauss–Lobatto nodes, which are the location of zeros and extrema (respectively) of the
Legendre polynomials. These have the advantage that a quadrature built on them (Gauss

quadrature) is exact for polynomials up to degree 2n � 1, while the same for Chebyshev
nodes (Clenshaw–Curtis quadrature) is only exact for polynomials up to degree n � 1. In
practice, however, the approximation error of both is very close [24, 25], and since Gauss
nodes are much harder to compute compared to eq. (3.4), we do not consider them further.

3.6 Multiple dimensions

The simplest generalization to multiple dimensions is to take the set of nodes {~xi} to be
the outer tensor product of the Chebyshev nodes of eq. (3.4) for each dimension,

{~xi} = {xi1}⌦ · · ·⌦ {xid}, (3.11)

with possibly different node count in each dimension, ni. This corresponds to interpolation
via nested application of eq. (3.2), or via the decomposition

ef(~x) =
n1X

i1=1

· · ·

ndX

id=1

ci1...id Ti1(x1) · · ·Tid
(xd). (3.12)

A detailed study of the interpolation error of this construction is presented in [26]. Roughly
speaking, it is similar to eq. (3.9) and eq. (3.10), except instead of n one must use ni, which
are of the order of d
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n, leading to progressively slower convergence as d increases. This is

known as the curse of dimensionality [27].

3.7 Dimensionally adaptive grid

The tensor product construction is fairly rigid in that it allows for no local refinement;
only the per-dimension node counts ni can be tuned. Such tuning is sometimes referred
to as dimensional adaptivity, and it can be beneficial. To examine that, let us inspect
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Figure 4: Approximation error of
f1, f2, f3, f4, and f5 using the ten-
sor product Chebyshev polynomial
interpolation of eq. (3.12), depend-
ing on the ratio of ni, the function
interpolated, and the symmetry han-
dling. The number of evaluations n

takes into account the symmetries of
each function. The grey lines in the
background are results for methods
discussed in subsequent sections.
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Results for : 
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qq̄ → tt̄H @ 0L
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Figure 6: Approximation error using lin-
ear, quadratic and cubic B-splines. Uni-
form knot vectors are used for f1–f4 and
not-a-knot knot vectors for f5. For f1, f3,
and f5 the difference between interpolat-
ing on the amplitude (a) or directly on the
test function (f) is shown. The grey lines
in the background are results for methods
discussed in other sections.
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Spatially adaptive sparse grids 
→  reduce number of grid nodes
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1Figure 9: Point distribution from spatial adaptivity with greedy and balanced refinement
for the two-dimensional test function f5.

where both of these basis functions are already implemented. Beyond fundamental basis
functions we also investigate extended not-a-knot B-splines as described in [49, 53].

C0 elements

Higher degree polynomials can be defined on the hierarchical structure by using grid points
on upper levels as the polynomial nodes [45, 52]. This implies the maximum degree p is
bounded by the maximum grid level. For sparse grids without boundaries the relation is
p  l�1. This can be seen already for the linear case in Figure 8, since on levels 1 and 2 the
basis functions are constant and linear respectively. The drawback of this extension is that
despite the higher degree, the smoothness is not increased and the interpolant will only be
continuous. For this reason these basis functions are usually referred to as C0 elements.

Fundamental B-splines

The fundamental B-spline basis is constructed with the aim of fulfilling the fundamental
property of eq. (5.10), while preserving useful properties of B-splines, for example smooth-
ness. The construction is introduced in [48], and it works by applying a translation-invariant
fundamental transformation to the hierarchical B-spline basis. Besides fulfilling the fun-
damental property, this transformation preserves the translational invariance of B-splines
which improves performance during evaluation. The modified basis that extrapolates to-
ward the boundaries is defined similarly to the linear case. We refer to [48] for more details
on the derivation. For both this and the C0 elements, the implementations in SG++ are
used for the benchmarks.

Extended not-a-knot B-splines

In this section we summarize the main equations and statements on extended not-a-knot
B-splines presented in [49, 53]. The extension mechanism ensures that polynomials are
interpolated exactly, which in many cases increases the quality of interpolation. The basis
consists of extended not-a-knot B-splines on lower levels, and Lagrange polynomials on
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Figure 12: Approximation error us-
ing spatially adaptive sparse grids with
different basis functions. Balanced re-
finement is used in all cases. For f1-
f4 interpolation is done on the ampli-
tude, while for f5 it is done directly on
the test function. The grey lines in the
background are results for methods dis-
cussed in other sections.
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background are results for methods dis-
cussed in other sections.
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Machine Learning Techniques: 
•  MPL (Multilayer perceptron, 5 layers, 512 channels each) 
•  L-GATr (Lorentz-Equivariant Geometric Algebra Transformer) [Brehmer, Bresó, de Haan, Plehn, Qu, Spinner, Thaler 2405.14806, 2412.09534] 
 respects space-time symmetry:

where log(yi) and �log(yi) are the mean and standard deviation of the amplitude logarithm
distributions over the whole dataset. When dealing with f2 and f4, this preprocessing is
not valid, because a takes negative values. We circumvent this issue by reflecting the am-
plitude distribution with respect to its maximum value, and then applying the logarithmic
standardisation.

As for the inputs, all networks are trained on functions of the four-momenta of the sam-
pled points. We derive the four-momenta for each point from their original parametrization
presented in eq. (2.8) and eq. (2.22). When applying this mapping for f1–f4, we prepare the
tt̄ inputs so that the angle 't lies only in the range [0,⇡], which allows all neural networks
to take advantage of the parity symmetry of these functions.

All networks are trained for 5 ⇥ 105 steps with a batch size of 256, the Adam opti-
mizer [62] and a Cosine Annealing scheduler [63] with a maximum learning rate of 10�4

when training for the f1 � f4 test functions and 5 ⇥ 10�4 for the f5 test function. Due
to instabilities during training, we refrain from applying early stopping and we perform
validation checks every 300 iterations.

6.1 MLP

We use an MLP as the first baseline for this task. The MLP is built as a simple fully
connected neural network with GELU activation functions [64]. The inputs for the network
are pairwise momentum invariants sij . Alternative input choices have been tested, including
the phase space parameters introduced in eq. (2.8) and eq. (2.22), yielding worse results.

The MLP architecture consists of 5 hidden layers with 512 hidden channels each,
amounting to 106 learnable parameters. This configuration is chosen as a result of a scan,
as the one that performed the best for 105 data points. The inputs are preprocessed by
taking their logarithms and performing standardization as in eq. (6.1).

6.2 L-GATr

Equivariant neural networks constitute a very attractive option for any problem where
symmetries are well defined [58, 59, 65–67]. These networks respect the spacetime symme-
try properties of the data in every operation they perform. They do so by imposing the
equivariance condition, defined as

f (⇤(x)) = ⇤ (f(x)) , (6.2)

where x is a network input, f is a network operation and ⇤ is a Lorentz transformation.
By restricting the action of the network to equivariant maps, it does not need to learn the
symmetry properties of the data during training and its range of operations gets reduced
to only those allowed by the symmetry. This makes equivariant networks very efficient to
train and capable of reaching high performance with low amounts of training data.

L-GATr is a neural network architecture that achieves equivariance by working in the
spacetime geometric algebra representation [68]. A geometric algebra is generally defined as
an extension of a vector space with an extra composition law: the geometric product. Given
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Figure 13: Approximation error of all
test functions using the MLP and L-
GATr. The grey lines in the back-
ground are results for methods dis-
cussed in the previous sections. Error
bands are obtained as the standard de-
viation of the test function estimations
from 3 independent runs.
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qq̄ → tt̄H @ 0L gg → tt̄H @ 1L gg → Hg @ 1L

→ Error does not improve beyond  level, even for HJ amplitude𝒪(10−4)

https://arxiv.org/pdf/2412.09534
https://arxiv.org/pdf/2412.09534


Optimising simulations for diphoton production at 
hadron colliders using amplitude neural networks 

9

Aylett-Bullock, Badger, Moodie  2106.09474

partition phase-space into IRC regions according to FKS and train one NN for each region → ensemble of neural networks

:gg → γγg

Figure 7: NN/NJet errors for the 2 ! 4 scattering process using a unit integration grid.

being in the chosen value of yp = 0.001. At higher multiplicity, a greater proportion of
points fall within the divergent region, Rdiv, however, this can hinder model performance
by unbalancing the training regime. It is therefore reasonable to aim to keep the propor-
tion of points in this region approximately constant throughout our experiments which is
achieved by lowering the value of yp (see Appendix B for more details).

Figure 7 shows the performance of our trained NN ensemble at the matrix element
level. As expected, the performance has decreased relative to the 2 ! 3 process shown in
Figure 2, yet the error distribution is still found to be approximately Gaussian, although
with a shifted mean. Despite this, the cross section calculated using the NN ensemble —
4.5 ⇥ 10�6

± 6 ⇥ 10�7 pb — is found to be in excellent agreement with that derived from
NJet — 4.9 ⇥ 10�6

± 5 ⇥ 10�7 pb. This suggests that although there are several points
where the ensemble approach performs poorly, particularly in comparison to the 2 ! 3

process, these are largely in the divergent region and found to not affect the cross-section
calculation too greatly.

Figure 8 shows the performance of the ensemble approach in six differential slices of
phase space. As in the previous example, the ensemble is found to perform well relative
to NJet: while noise in the tails of the distributions is still observed, these appear to be
reduced in comparison to the 2 ! 3 process. This further supports the assertion that the
points where the ensemble performs poorly are suppressed.

Given the difference in cross-section values calculated using NJet and the ensemble
approach, we perform reweighting in the divergent region as discussed in Section 3.4 and
Section 4.1. As shown in Figure 9, reweighting in this region can bring the NN ensemble
derived cross section closer to the value calculated using NJet. In the case of the 2 ! 4

process, the MC error on the NJet result is significantly larger for the same number of points
compared to the 2 ! 3 process. Given these larger error, and that the ratio �

(RW)
/�

(NJet)

resides within these errors, it is predictably noisy, yet still converges showing that this
approach to reweighting can be generalised across multiple processes.
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Figure 8: Differential distributions normalised to the cross section for the 2 ! 4 process
comparing NJet (red) with the NN ensemble (blue). The NJet results are quoted with MC
errors, and the NN results with precision/optimality uncertainties calculated as described
in Ref. [60] but which are negligible in comparison.
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points with large deviations typically phase-space suppressed 
            → still results in good predictions of cross sections

(a) Unit integration grid.
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Figure 12: Comparison of NN/NJet errors between the single NN and NN ensemble
approaches for the 2 ! 3 scattering process using different integration grids.

singular regions of phase space, which similarly occur in the processes studied in this work,
especially at high multiplicity. For completeness, we perform a similar comparison on the
2 ! 3 gluon-initiated diphoton processes; we do not compare on the 2 ! 4 process as it is
computationally expensive to do so and it is a natural higher multiplicity extension of the
2 ! 3 process.

Figure 12 shows the matrix level error analysis of the 2 ! 3 scattering process using
both a unit and VEGAS optimisation grid. In both cases, the error distribution for the
single NN approach has a significantly broader character than the ensemble method. This
demonstrates that the findings of described in Ref. [60] are consistent with those presented
in this study.
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3 hidden layers: 30-40-30
100k training points

ln(Δ) = ln (1 +
NN − NJet

NJet )
=

NN − NJet
NJet

+ 𝒪((NN − NJet)2)

added intricacies of event generators which are important for extracting physical results,
such as PDF weighting and choices of integrators.

We begin this section with an overview of the setup for training our ML approach
based on those presented in Ref. [60] and finish with a discussion on interfacing with event
generators.

3.1 Phase-space partitioning

IR divergences arise from soft and collinear real emissions and integrals over massless par-
tons appearing in virtual corrections. Our ML approach requires the isolation of real emis-
sion IR singularities such that a different NN can be trained on each soft and collinear region
[60]. To do this, we partition the phase space into divergent and non-divergent regions and
then subsequently sub-divide the divergent region according to the FKS subtraction [68, 69].
The original implementation of this method was for e

+
e
�

! qq̄ + jets collisions in which
the IR singularities only appear in the final state. In the processes discussed in this paper,
IR singularities appear in initial-initial, initial-final and final-final state pair combinations.
We therefore extend the partitioning to these states for hadronic processes as specified in
Ref. [69].

As in Ref. [60], we parameterise our phase space according to the Lorentz invariant
yij = sij/s12, where sij = (pi + pj)2. The PDF convolution creates a non-fixed partonic
centre-of-mass energy p

s12.
We now define the divergent and non-divergent regions of phase space as

Rdiv = {p | min(yij)  yp, p = (p1, p2, . . . , pn), i, j 2 {1, . . . , n}} , (3.1)
Rnon-div = {p | yp  min(yij), p = (p1, p2, . . . , pn), i, j 2 {1, . . . , n}} , (3.2)

where yp is fixed for the process (see Appendix B), p is a phase-space point consisting of
the incoming momenta {p1, p2}, and the outgoing momenta {p3, . . . , pn}, where n is the
number of particles in the process. The FKS pairs are then defined as

PFKS = {(i, j) | 1  i  n, 2  j  n, i 6= j,

M
(n,0) or M

(n,1)
! 1 if p

0
i ! 0 or p

0
j ! 0 or ~pi k ~pj}. (3.3)

Finally, partition functions are used as in Ref. [60]

Si,j =
1

D1sij
, D1 =

X

i,j2PFKS

1

sij
, (3.4)

such that

d� =
X

i,j

Si,j d�, (3.5)
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Figure 1. Schematic diagram of our neural network architecture. We have a densely-connected
neural network with inputs phase-space points, p, and recoil factors, yij,k, propagated through
hidden layers to the output layer which outputs Cijk. These coefficients are combined with their
corresponding spin-averaged dipoles as in (2.2) to produce an approximation of the matrix element.
Diagram of neural network generated with the aid of [33].

clustered using FastJet [35, 36] with the e+e� kt algorithm [37]. Global phase-space cuts
are applied according to the criterion ycut  yij where yij are the Mandelstam invariants
normalised by scom. Jets are clustered exclusively where dcut was supplied to FastJet.
We took dcut = max(2⇥ ycut, 0.01⇥ scom). We explore three different values of the global
phase-space cut parameter, ycut = [0.01, 0.001, 0.0001], to demonstrate the ability of the
factorisation-aware neural network to effectively interpolate in more and more singular
regions of phase-space.

The generated phase-space points are fed to the NJet package [38] to calculate colour
and helicity summed tree-level matrix elements. All external legs have been considered to be
massless. The strong coupling constant has been set to ↵s = 0.118, and the electromagnetic
coupling constant has been set to ↵e = 1.0/132.5070. The mass of the Z-boson is taken to
be mZ = 91.188 GeV. These parameters and those not listed, are consistent with those in
the Standard Model mode of MadGraph5_aMC@NLO[39].

The phase-space points generated form the basis of our inputs to the neural network
with the matrix elements as our fitting targets. As with most machine learning applica-
tions, we need to demonstrate that our neural network emulator has managed to generalise
outside of the training dataset. We do this by firstly testing on an independent testing
dataset that is never exposed to the network during training, and secondly by predicting
on random trajectories in phase-space. Generation of phase-space trajectories is described
in Appendix C. We believe that accurate predictions on random phase-space trajectories
demonstrates the ability of the neural network to extrapolate to never before seen data that
is of a different nature to both the training and testing datasets.

– 4 –

2.1 Infrared divergences and dipole factorisation formula

It is well known that in soft and collinear limits the matrix element in n+1-body phase-space
factorises into a singular factor and a reduced matrix element in n-body phase-space [30, 31].
This factorisation was used by Catani and Seymour [32] to construct subtraction terms for
the real radiation part of a NLO calculation. They introduced a factorisation formula with
universal dipoles that smoothly interpolates between the soft and collinear limits to capture
the singular structure in these regions of phase-space. The dipole factorisation formula can
be written schematically as

|Mn+1|2 ! |Mn|2 ⌦Vij,k , (2.1)

where Vij,k is a process independent, singular factor. It depends on the momenta and
quantum numbers (colour and spin) of partons i, j, k, where i is the emitter parton, j

is the emitted parton, and k is the spectator parton. For singly unresolved limits, this
factorisation isolates all the divergent behaviour in Vij,k and the factor |Mn|2 is free of
divergences, which makes it more amenable to emulation through a neural network. The
dipole factorisation formula forms the basis of our fitting ansatz which we present in detail
in Section 2.2.

2.2 Fitting coefficients of Catani-Seymour dipoles

Instead of using a neural network to fit the matrix element directly, we use the dipole
factorisation formula to build an ansatz of the colour and helicity summed n + 1-body
matrix element,

h|Mn+1|2i =
X

{ijk}

CijkDij,k , (2.2)

where Dij,k = hVij,ki/sij are the spin-averaged Catani-Seymour dipoles divided by the cor-
responding Mandelstam invariant and Cijk are the coefficients we train the neural network
to fit. Cijk can be interpreted as the reduced matrix element in n-body phase-space. Since
the input for the Cijk function is the full n+1 phase-phase information, the neural network
will also model the phase-space mappings usually introduced in the factorisation formula.
A schematic diagram illustrating our ansatz is given in Figure 1. The sum over {ijk} de-
notes the sum over relevant permutations of the external outgoing legs. More detail on this
is given in Section 2.4.2. The representation (2.2) is not unique but through appropriate
training, the neural network takes advantage of the right ingredients to model the divergent
soft and collinear behaviour of the matrix elements.

This form of the ansatz allows the neural network to avoid fitting a rapidly varying
function over the phase-space, leaving the Catani-Seymour dipoles to reproduce the correct
singular behaviour, meaning a single neural network can interpolate a now relatively smooth
function over the phase-space.

2.3 Data generation

For all multiplicities, phase-space is sampled uniformly using the RAMBO algorithm [34]
with a centre-of-mass energy p

scom = 1000 GeV. Phase-space points are subsequently

– 3 –

Ansatz for fit using NN:

Catani Seymour dipolesfit coefficients

→  reliable results also in IRC limits 

Figure 4. Comparison of error distributions of 10 million matrix element predictions between NNs
used in Section 3.1 labelled as ‘Small’ and our larger NNs labelled as ‘Large’. Note that ‘small’
and ‘large’ NNs were trained on 500k and 40m training samples, respectively. The testing data is
identical to those shown in Figure 3, for the relevant global phase-space cuts.

the network has gathered on the matrix element to augment the dataset to reduce the
statistical error. Using such an augmentation technique would introduce a new systematic
error on the prediction related to the accumulated network interpolation/extrapolation
error, which would have to be balanced with the reduction in the MC integration error.
Figure 5 suggests that the dataset could be augmented in such a way by a large factor
before reaching a minimal overall uncertainty. This opportunity might not seem very useful
for this particular example of leading order matrix elements where evaluations are relatively
cheap computationally, but if a similar degree of accuracy in the emulation can be obtained
for higher order matrix elements, this procedure could reduce the resource cost of matrix
element calculation significantly. We defer the study of this augmentation method to future
work.

Since we retain good performance by relaxing the global phase-space cut, we carry
out a simple test of generalisability by using the 5-jet ycut = 0.0001 model to infer on the
two datasets with harsher cuts. This is shown in Figure 6 where we see that accuracy is
comparable to the reference (blue) in both cases. In the case of ycut = 0.01 (left), the
model trained with more of the phase-space reduces errors in the right-hand tail of the
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for this particular example of leading order matrix elements where evaluations are relatively
cheap computationally, but if a similar degree of accuracy in the emulation can be obtained
for higher order matrix elements, this procedure could reduce the resource cost of matrix
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Since we retain good performance by relaxing the global phase-space cut, we carry
out a simple test of generalisability by using the 5-jet ycut = 0.0001 model to infer on the
two datasets with harsher cuts. This is shown in Figure 6 where we see that accuracy is
comparable to the reference (blue) in both cases. In the case of ycut = 0.01 (left), the
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- avoid by multiplication with appropriate factors



Summary
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• Multiple Method: 
- classical methods  

(polynomial interpolation, splines, sparse grids) 
- Machine learning 

• Different strategies to deal with singularities: 
- subtract singular terms before fit 
- fit coefficients of singular terms 
- ensembles of neural networks 
- avoid by multiplication with appropriate factors

•  Which method works best for a given use case? 
•  Which precision is required?  
 (on amplitude / cross section) 

•  How to deal with uncertainties? 
 (of input data; uncertainties due to interpolation) 

•  How can we incorporate parametric dependencies? 
 (anomalous couplings, scale dependence, …) 

•  …

& Open Questions


