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The point of Les Houches is to acknowledge 
our ignorance behind closed doors and to 
study such ignorance together

Gherardo Vita, 12/06/2025
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Shower Monte Carlo event generators
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➤ Shower Monte Carlo Event generators favourite theory tool at the LHC (FCC-ee ?)
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Parton showers accuracy: where do we stand and where we are headed to
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1. How do we assess uncertainties to current parton shower predictions?

2. Can we get an analytic understanding of the formal accuracy of Parton 
Showers and improve it sytematically as done in analytic calculations? 

Let’s begin simple: perturbative physics in SMC. 

Two pressing issues for (matched) parton shower predictions:



Les Houches, SM Session, 2025Silvia Ferrario Ravasio

Parton Shower formal accuracy
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➤For many decades, parton showers accuracy has been improved via matching with fixed order 
calculations

➤One can however use analytic resummation as inspiration to assess and improve the 
logarithmic accuracy [Catani, Marchesini, Webber Nucl.Phys.B 349 (1991) 635-654]
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Parton Shower formal accuracy
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➤Parton showers used to interpret LHC data are Leading Logarithmic, with partial Next-To-
Leading-Logarithmic correction taken into account [Dagupta et al, JHEP 09 (2018) 033]

➤For many decades, parton showers accuracy has been improved via matching with fixed order 
calculations

➤One can however use analytic resummation as inspiration to assess and improve the 
logarithmic accuracy [Catani, Marchesini, Webber Nucl.Phys.B 349 (1991) 635-654]

“N(N)LL” revolution
PanScales 
Phys.Rev.Lett. 125 (2020) 5, 
052002

Alaric 
 JHEP 10 (2023) 091 

Deductor 
Phys.Rev.D 104 

(2021) 5, 054049

Apollo 
JHEP 07 (2024) 161

FHP   
JHEP 09 (2020) 014 
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N(N)LL parton showers: recent selected highlights
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NLL shower for  
collisions with LO 
multi-jet merging 
[Alaric]

pp

NNLL shower for  
[Panscales]

e+e− → jj

NLO matching to achieve NNDL accuracy for 
2-legged processes [PanScales]
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Parton Shower uncertainties
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➤ (N)NLL parton showers are ready for FCC-ee studies, and will (hopefully!) soon be ready for 
pheno applications for the LHC (MPI / NLO matching with many legs…)

➤We need to devise a robust way of assessing uncertainties given the current state-of-the-
art (LL for now, will evolve soon)

HARMONISATION OF MONTE CARLO AND UNCERTAINTIES ESTIMATES, WHICH MUST BE AS 
CONSISTENT AS POSSIBLE ACROSS PROCESSES (TOP, DY, GGF, VBF ETC)!
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Scale variations 
within a single 
PS simultation 
is not sufficient!

1. Produce 3 preductions: one with 
Pythia8, one with Herwig7 and one 
with Sherpa3 (with your favourite 
matching and PS) 

2. For one of this, include uncertainties 
stemming from renormalisation, 
factorisation (in the hard and PS MEs) 
and starting scale variations 

3. Sum in quadrature these uncertainties

There is no PS vs matching uncertainty: all at once
 [GeV]Mjj
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Matching and negative weights
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➤ Accuracy is not sufficient alone: efficiency is also important!

➤ Issue arising from negative fraction of events f, as we need  times more data to 
have the same statistical precision of a positive defined sample!

(1 − 2f )2

➤ Negative weights are difficult to handle in Machine Learning applications
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Matching and negative weights
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➤ Accuracy is not sufficient alone: efficiency is also important!

➤ Issue arising from negative fraction of events f, as we need  times more data to 
have the same statistical precision of a positive defined sample!

(1 − 2f )2

➤ Negative weights are difficult to handle in Machine Learning applications

What are the currents needs? 
Are they process-dependent?

Standard candles 
e.g. pp → V

High multiplicity processess 
e.g. pp → V j1…jn
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Matching and negative weights
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Standard candles 
e.g. pp → Z

➤ It is possible to devise solutions that are positive-definite

B̄ = B + V + Cint+ ∫ R − C
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Matching and negative weights
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Standard candles 
e.g. pp → Z

➤ It is possible to devise solutions that are positive-definite

KrkNLO: modification of 
the PDF factorisation 
scheme to allow NLO 
accuracy to be achieved by a 
multiplicative positive 
reweight. This gives positive 
weights by construction, 
since it does not use 
subtractions. 
JHEP10(2015)052 
JHEP 2025, 62 (2025)

ESME: Subtracted real cross 
section are converted into non-
negative integers such that 

 

arXiv:2504.05377

⟨n⟩ = 1 +
∫ R − C

B
+ 𝒪(α2

s )

B̄ = B + V + Cint+ ∫ R − C
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Standard candles 
e.g. pp → Z

➤ It is possible to devise solutions that are positive-definite

KrkNLO: modification of 
the PDF factorisation 
scheme to allow NLO 
accuracy to be achieved by a 
multiplicative positive 
reweight. This gives positive 
weights by construction, 
since it does not use 
subtractions. 
JHEP10(2015)052 
JHEP 2025, 62 (2025)

ESME: Subtracted real cross 
section are converted into non-
negative integers such that 

 

arXiv:2504.05377

⟨n⟩ = 1 +
∫ R − C

B
+ 𝒪(α2

s )

B̄ = B + V + Cint+ ∫ R − C

Can be (at least partially) extendend  
to more complex processes? 
Can be useful for FO as well?
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https://indico.cern.ch/event/1501347

General advances

https://indico.cern.ch/event/1501347/timetable/#20250505.detailed
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Non-perturbative physics: formal accuracy?

18

➤ Past years have seen a lot of attention to the perturbative components of SMC: here 
at least defining the accuracy is “easy”, how do we define the formal accuracy of a  
hadronisation model?

➤ Analytic models for hadronisation should provide a pathway, but their formulation 
is still quite simplified / under scrutinity

WHICH INSIGHTS CAN HADRONISATION 
DEVELOPMENS IN SMC GET FROM ANALYTIC 

MODELS AND VICEVERSA?
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Non-perturbative physics: formal accuracy?

19

The cutoff  terminating the shower evolution should be viewed as an 
infrared factorization scale so that parameters or non-perturbative effects 
of the MC generator may have a field theoretic interpretation with a 
controllable scheme dependence. This implies that the generator’s parton level 
should be carefully defined within QCD perturbation theory with subleading 
order precision. Furthermore, it entails that the shower cut  is not 
treated as one of the generator’s tuning parameters, but that the tuning 
can be carried out reliably for a range of  values and that he hadron level 
description is -invariant. This in turn imposes non-trival constraints on the 
behavior of the generator’s hadronization model, so that its parameters can 
adapt accordingly when the  value is changed.

Q0

Q0

Q0
Q0

Q0
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Hadronisation corrections: energy scaling for event shapes

20

How does the difference between hadronised and  PS predictions scale with energy? How does 
it behave for different generators? 
How does it compare to analytic models used for  extractions?(e.g. 2506.09130 ,  
2412.15164, 2204.02247,2301.03607  +…)

αs

Q(⟨τ⟩had − ⟨τ⟩PS)

JHEP 05 (2001) 061

https://arxiv.org/abs/2506.09130
https://arxiv.org/abs/2412.15164
https://arxiv.org/abs/2204.02247
https://arxiv.org/abs/2301.03607
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How does the difference between hadronised and  PS predictions scale with energy? How does 
it behave for different generators? 
How does it compare to analytic models used for  extractions?(e.g. 2506.09130 ,  
2412.15164, 2204.02247,2301.03607  +…)

αs

Q(⟨τ⟩had − ⟨τ⟩PS)

JHEP 05 (2001) 061
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➤ 2023 LHE study 
(involving e.g. 
Jennifer, Daniel and 
Andrzej) 
 https://
phystev.cnrs.fr/wiki/
2023:groups:smjets:js
s-measurements:start 
jet substructure: 
benchmariking 
excercise across 
several SMC 
investigating particle 
correlators, Lund 
plane densities in 

dijet 
events
{pp, ee} →

➤ Comparisons between 
flavoured jet 
algorithms using 
NLOPS and fixed 
order calculations

SMC and jets phenomenology: building on 2023 LHE studies
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Figure 20: Same structure as Fig. 16 but for the Les Houches angularity of the leading

flavoured jet, Aω=0.5(jb/c,1).

same when considering the Herwig dipole shower that treats both as equally massless quarks.

For the other showers the di!erences between the algorithms are significantly enhanced for

the c-jet case, while they represent a minor correction for b jets, consistent with our earlier

observations.

Focusing on the larger visible di!erences in c jets, we observe consistent qualitative results

between the di!erent showers. SDF, GHS, and CMP behave roughly similarly to anti-kt (and

hence each other). This should not be surprising, since they behave similarly when considering

the pt spectrum, indicating that they label roughly the same jets as flavoured, and we simply

evaluate the substructure observables of those jets. We can hence mainly learn something

about the characteristics of jets that are labelled in some algorithm but not the other. for

example, the excess b-jet cross section predicted by the ghost labelling technique appears to

be associated with a large jet mass and angularity. The reduced cross section in the IFN

algorithm relative to anti-kt on the other hand appears to be largely based on removing jets

with large mass and angularities. This reinforces the idea that di!erences are mainly caused

– 49 –

CERN-TH-2025-113, IFJPAN-IV-2025-13, MCNET-25-14,

MPP-2025-118, PUBDB-2025-01862
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Figure 20: Same structure as Fig. 16 but for the Les Houches angularity of the leading

flavoured jet, Aω=0.5(jb/c,1).

same when considering the Herwig dipole shower that treats both as equally massless quarks.

For the other showers the di!erences between the algorithms are significantly enhanced for

the c-jet case, while they represent a minor correction for b jets, consistent with our earlier

observations.

Focusing on the larger visible di!erences in c jets, we observe consistent qualitative results

between the di!erent showers. SDF, GHS, and CMP behave roughly similarly to anti-kt (and

hence each other). This should not be surprising, since they behave similarly when considering

the pt spectrum, indicating that they label roughly the same jets as flavoured, and we simply

evaluate the substructure observables of those jets. We can hence mainly learn something

about the characteristics of jets that are labelled in some algorithm but not the other. for

example, the excess b-jet cross section predicted by the ghost labelling technique appears to

be associated with a large jet mass and angularity. The reduced cross section in the IFN
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DELVE DEEPER INTO JET SUBSTRUCTURES AND 
LUND PLANE FOR HEAVY QUARKS? 

NEW IDEAS FOR JSS BUILT FROM LUND TREES?

https://phystev.cnrs.fr/wiki/2023:groups:smjets:jss-measurements:start
https://phystev.cnrs.fr/wiki/2023:groups:smjets:jss-measurements:start
https://phystev.cnrs.fr/wiki/2023:groups:smjets:jss-measurements:start
https://phystev.cnrs.fr/wiki/2023:groups:smjets:jss-measurements:start
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Some more recent highlights 

24

The numerically stable evaluation of scattering matrix 
elements near the infrared limit of gauge theories is of great 
importance for the success of collider physics  experiments. 
We present a novel algorithm that utilizes double precision 
arithmetic and reaches higher recision than a naive quadruple 
precision implementation at smaller computational cost. The 
method is based on physics-driven modifications to 
propagators, vertices, and external polarizations.
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➤ This is our biased review of recent developments which can lead to possible 
collaborative projetcs: we encourage you to make more suggestions!

Concluding (or opening?) remarks

➤ Les Houches is always a good place to discuss: 
- event format standard: does it meet the requirements of more sophisticated  
showers 
- tuning strategies  
- (let me repeat) uncertanties estimate (not just NLOPS/SMC…) 
- wishlists (LHC, but also FCC-ee — tempatively scheduled on 21/06/2025)


