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Flavour jets

Jets are stable concepts: jets defined at
- fixed order
- parton level
- hadron level
- detector level

roughly correspond to each other

It is interesting to assign flavour to a jet

- Access to essential information about hard
scattering (and potentially the initial state)

- Signature for many important signals
(top, Higgs, intrinsic charm?, ...)

However: flavour assignment is a non-trivial task
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IRC safety

collinear splitting

soft radiation

- Infrared and collinear safe observables must be the same when
- a particle splits into two collinear particles
- an additional soft particle is radiated
- Ensures that observables can be calculated in fixed-order perturbation theory
(otherwise IR poles do not cancel between real and virtual corrections)
- Not only theoretical issue: IR sensitive observables pick up more dependence on
long-distance / low-energy physics
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Collinear g — bb splitting
- Problematic if presence of “any” b quark determines jet flavour
- Collinear splitting influences flavour assignment
- Problem starts at NLO
- Fix: Change flavour recombination scheme
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scheme 4
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IRC safety and flavour

Flavour dependent observables can easily violate IRC safety

“.we require at least one b-tagged jet with p;, > 25GeV .."

Collinear b — bg splitting

- Causes logarithmic sensitivity if flavoured hadron must pass, e.g.,
Pt,cut > 5GeV cut

- Such a cut cannot be implemented on parton level
— requires hadronisation/fragmentation function




IRC safety and flavour

Flavour dependent observables can easily violate IRC safety

“.we require at least one b-tagged jet with p;, > 25GeV .."

Soft g — bb splitting
- Causes problems when wide angle b quarks are clustered into jets
- Soft splitting influences flavour assignment
- Problem starts at NNLO
- Fix requires flavour-aware jet algorithms




Flavoured jet algorithms
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First proposal for flavoured jet algorithm:
Flavour-k; algorithm [Banfi, Salam, Zanderighi '06]

- Based on k; algorithm

- Modification of distance measure depending on
flavour, e.g,,

e max(kt;, k;) softer of i, j is flavoured,
! | min(k?;, k) softer of i, j is flavourless
- Prefers clustering soft quark pairs together
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Flavoured jet algorithms

New generation of jet algorithms
- SDF (soft drop flavour)
[Caletti, Larkoski, Marzani, Reichelt '22]
- CMP (flavour anti-ky)
[Czakon, Mitov, Poncelet '22]
- GHS (flavour dressing) i
[Gauld, Huss, Stagnitto '22] o
- IFN (interleaved flavour neutralisation)
[Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler 23]

— Based on/closely resemble anti-k; algorithm
— Details: see talks by authors at » LHCb public meeting
— Available as fjcontrib plugins for FastJet
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New generation of jet algorithms

- SDF (soft drop flavour)

[Caletti, Larkoski, Marzani, Reichelt '22]
- CMP (flavour anti-ky)

[Czakon, Mitov, Poncelet '22]

- GHS (flavour dressing)
[Gauld, Huss, Stagnitto '22]

- |FN (interleaved flavour neutralisation)
[Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler 23]

— Based on/closely resemble anti-k; algorithm
— Details: see talks by authors at » LHCb public meeting
— Available as fjcontrib plugins for FastJet

Alternative, fragmentation-based approach:
WTA (winner take all flavour)
[Caletti, Larkoski, Marzani, Reichelt '22]
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Table: [Salam "24]
- Biggest impact from change of flavour
recombination scheme

- Illustration for pp — Z + b jet
Top two panels compare

anti-k; with cone matching (any flavour)

anti-ke with ghost matching (any flavour)
anti-k: with mod2 flavour

- Hadronisation does not play a major role
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Fixed-order observables
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- Effects of new algorithms in fixed-order calculations are fairly minor (few %)

- Consistent with low flavour multiplicity in final states



NLO+PS: Z+b/c jets

pp — Z + b jet in central kinematics
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NLO+PS: Z+b/c jets

pp — Z + ¢ jet in central kinematics
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Comparing fixed-order and parton shower matched calculations

pp — Z + b jet in central kinematics
-------- NLO  -== NNLO —— Sherpa  ----- HT ang.
pp — Z+bottom LHC 13 TeV

- Differences between FO and PS in threshold
and tail regions

- Threshold region: related to matching and
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Comparing fixed-order and parton shower matched calculations

pp — Z + c jet in central kinematics
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Investigate effectiveness of g — bb rejection
DARORN o 2 xRl
\_-‘f b S o * e .,

Pt b/Pt,j

Pythia Z + b (1837 evts)
Pythia Z + q (146 evts)
Pythia Z + g (99 evts)

T

6 8

- Pythia LO+PS simulation of pp — Z + jet events
- Select events with at least one b-labelled jet (via anti-k, with net flavour)

- Rough expectation:
- Red dots correspond to events with g — bb splittings
n

- Grey dots correspond to events with “hard b jet”



Investigate effectiveness of g — bb rejection
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Impact o AS heavy flavour tagging training samples
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+ Pythia LO+PS simulation of pp — Z' — cC events (m, = 4TeV)
- Similar to setup used for ATLAS flavour tagger training
- g — cc and g — bb splittings can have sizeable effect on training sample



Including decays of heavy-flavour hadrons
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- Most flavoured jet algorithms need undecayed hadrons as inputs

- Decayed vs. undecayed inputs have a percent level effect on pp — Z 4 bb(ct)



Exclusive labelling/tagging with Winner Take All (WTA) flavour

- Particle reconstruction abilities of LHCb and ALICE
allow for different approach

- Fully reconstruct exclusive decay mode of a flavoured
hadron

- Use flavour definition based on WTA axis
[Caletti, Larkoski, Marzani, Reichelt '22]

- Recluster into angularly-ordered tree

Diagram: [Ezra’s LHC EW WG talk '25]

14


https://arxiv.org/abs/2205.01117
https://indico.cern.ch/event/1537901/#3-new-jet-algorithms-studies-f

Exclusive labelling/tagging with Winner Take All (WTA) flavour

- Particle reconstruction abilities of LHCb and ALICE
allow for different approach

- Fully reconstruct exclusive decay mode of a flavoured
hadron

- Use flavour definition based on WTA axis
[Caletti, Larkoski, Marzani, Reichelt '22]

- Recluster into angularly-ordered tree
- Follow the hardest branch

Diagram: [Ezra’s LHC EW WG talk '25]

14


https://arxiv.org/abs/2205.01117
https://indico.cern.ch/event/1537901/#3-new-jet-algorithms-studies-f

Exclusive labelling/tagging with Winner Take All (WTA) flavour

- Particle reconstruction abilities of LHCb and ALICE
allow for different approach b jet /

- Fully reconstruct exclusive decay mode of a flavoured
hadron

- Use flavour definition based on WTA axis
[Caletti, Larkoski, Marzani, Reichelt '22]
- Recluster into angularly-ordered tree
- Follow the hardest branch
- Define flavour by particle along the axis

Diagram: [Ezra’s LHC EW WG talk '25]

14
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WTA flavour in an LHCb environment
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- WTA flavour behaves similar to new algorithms
- Significant contribution from g — bb splitting
+ Jet mass: second peak at m; ~ 2mg
— suppressed by flavour recombination schemes



Conclusions

- New IRC safe flavour jet algorithms are available

- We investigate their use as flavour labelling strategies

- Implementations as fjcontrib plugins for FastJet are available

- Biggest effects come from change of flavour recombination scheme

- Algorithms largely yield comparable results

- Scenarios with large amount of flavoured particles can bring out differences
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- Investigate impact of hadronisation?

- Deeper look into jet substructure?
- Investigate interaction with unfolding and flavour tagging?

- New algorithms as label providers for tagger training?

- Interaction with g — ff modelling?
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