

Gravitation et Antimatière

saclay

Est-ce que l'accélération de la pesanteur terrestre a la même valeur, le même signe pour la matière et l'antimatière ?

Comment le mesurer ? Illustration par un projet d'expérience.

Principe d'équivalence faible

"Si un corps neutre de test est placé en un point de l'espace-temps avec une vitesse initiale, alors sa trajectoire sera indépendante de sa structure interne et de sa composition."

⇔ Simultanéité de la chute des corps

⇔ Egalité masse inerte et masse grave

			AIST		R. Suzuki, T. Ohdaira	
CEA/DSM/IRFU			ETU7	D. C.	ualli II Candotti A Dubbia	
SACM	J-M Rey, A. Curtoni, O. Delferrierre, L. Liszkay J-P. Bard, P. Legou, X. Coppolani V. Blideanu M. Carty, Y. Sauce B. Mansoulié, J-P. Pansart, P. Pérez, Y. Sacquin		LINZ P.	P. Cri	Criveiii, U. Genaoiii, A. Kuobia	
SEDI			RIKEN	M. Hassan, A. Mohri, H. Saitoh, Y. Yamazaki		
SENAC			CNRS/CERI		M.F. Barthe, P. Desgardin	
SIS						
SPP			CNRS/LCP	ME	M. Etienne, A. Walcarius	
CEA/DSI	M/IRAMIS	C. Corbel	CNRS/LMP	С	V. Valtchev	
			ECOLE POL	YTECHNIQUE	J-P. Boilot	

Theory and Experiment

J. Scherk, Phys. Lett. B (1979) 265.

-Experimental Constraints : range < 1 pc

Bellucci & Faraboni, Phys. Lett. B 377 (1996) 55.

Indirect limits

$K_0 - \overline{K}_0$	SN1987 a	Cyclotron frequency p/p
Direct Tests		
Charged antimatter	e^+ or \bar{p} (e.m. shielding)	
Neutral antimatter	\bar{n} hard to slow down	Ps short lifetime
	$oldsymbol{ar{H}}$ cooling limit mK	$oldsymbol{ar{H}}^+$ cooling limit μK
	AEGIS(CERN), AGE(FNAL)	

No direct measurement exists

Using \overline{H}^+ (J.Walz & T.Hänsch)

How to produce \overline{H}^+

In $e^+ \rightarrow Ps$ converter : High density of $Ps \sim 10^{12}$ cm⁻² in a few ns

→ extraction in \leq 50 ns of $0^{10-11}e^+$ from positron trap

and defocus towards converter

<u>Note:</u> cross-section $\propto n^4$

If Ps is excited to n=4, all \bar{p} are transformed into \bar{H} for $E(\bar{p}) << 1 \text{ keV}$

Binding energy $Ps(n=3) \sim 0.75 \ eV \sim Binding \ E \ of \ \overline{H}^+$

Cross-sections on P_s

Gravity Experiment with $\overline{\mathrm{H}}^{+}$

Project of intense e+ source

http://www-dapnia.cea.fr/Phocea/Vie_des_labos/Ast/ast_technique.php?id_ast=784

Industrial Linac

E(e-) = 6 MeV (< neutron activation threshold) v = 220 HzI = 0.2 mAbunch length 2 - 4 μ s Magnetron 1.9 MW peak Total electric power 35 kVA Install May 2008 RF frequency 3 GHz Acceleration length 21 cm Beam diameter 1 mm, 6 mm at target Overall dimensions 1 m x 1 m x 0.8 m

e⁺ production and transport

<u>Yields with I = 0.2 mA</u>

- •W moderator $\varepsilon = 10^{-4}$ > 10⁷ slow e+/s
- •Ne moderator transport efficiency 55% > 10⁸ slow e+/s
- •Large beam size to be reduced for trap filling

Installation Hall 126 (Saclay)

Simulation for radiological safety

e⁺/e⁻ selector

Applications des Positons Lents

Graser ou Laser 511 keV

Stockage d'énergie ?

Propulsion (USAF, NASA)

Imagerie Médicale

Gravity Experiment with $\overline{\mathrm{H}}^{+}$

Fast extraction from trap

T. Hassan, A. Mohri, P. Pérez, H. Saitoh, Y. Yamazaki

RIKEN MRT Test of fast ejection with electrons (Nov '05) Apply fast deformation of potential well

Gravity Experiment with $\overline{\mathrm{H}}^{+}$

Porous SiO₂ as converter

Materials: porous layers made by the sol-gel method

- deposition by spin coating (300-500 nm thickness)
- removal of porogen by heating in air at 400 °C
- pure SiO₂ structure (amorphous walls)

silicon: TEOS, (tetraethoxysilane)

porogen: polymer or surfactant (removed by solvent or heating)

Slow e⁺ beams

N. Alberola et al., Nucl. Instr. Meth. A 560 (2006) 524.

CERN slow e⁺ beam

Measure of conversion efficiency $e^+ \rightarrow Ps$ (3 γ fraction)

result: ~ 36 % 3 γ annihilation fraction \rightarrow emitted oPs

Porous layer with 2 nm pores (CTAB)

0.3 annihilatign ratio 2 کە.1 CTAB 3.08 keV positron energy 0.0 ∟ 0.0 0.1 0.2 0.3 0.4 Porogen filling (molar ratio) Orleans0610 anal/gPorogC collapse 3D hex 2D hex cubic

- low porogen content: closed pores
- high porogen content: oPs emission into vacuum

oPs emission highest at 2D hex symmetry but no evidence for direct structure dependence

Porous layer with 6 nm diam. pores (F 127)

 constant 3 gamma annihilation fraction at high porogen content
 → open pore system, saturated oPs production

- low porogen content: annihilation in the pores
- high porogen content: highly interconnected pore system
 → oPs emission into vacuum

Comparison of the 3 gamma annihilation fraction

similar max. 3 gamma fraction

Measure conversion efficiency $e^+ \rightarrow Ps$ (lifetime)

Positronium reemission yield from mesostructured silica films

Measure conversion efficiency $e^+ \rightarrow Ps$ (time of flight)

Time of flight: open and closed pore system

Time of flight: F 127 and CTACl – templated layers

- 0.5 1 keV: ~ 1 eV oPs energy
- 3 4 keV: ~ 100 meV oPs energy
- no complete oPs thermalization
- 3 4 keV: ~ same emission efficiency
- nearly independent from pore size

(TOF meas. from R. Suzuki, AIST, Tsukuba)

MC model using the GEANT 4 program package

Gravity Experiment with $\overline{\mathrm{H}}^{+}$

Fabrication du faisceau de p

CERN Antiproton Decelerator (AD)

Letter of Intent to the CERN-SPSC-2007-038

A new path to measure antimatter free fall

P. Pérez, L. Liszkay, B. Mansoulié, J.M.Rey DAPNIA, CEA-Saclay, France

A. Mohri, Y. Yamazaki* Atomic Physics Laboratory, RIKEN, Wako 351-01, Japan

N. Kuroda, H.A. Torii, Institute of Physics, University of Tokyo, Komaba, 153-8902 Tokyo, Japan

Submitted 30-nov-2007

15-jan-2008: encouraged to submit a proposal with ASACUSA

Proposal AEGIS (gravitation with H *) accepted by SPSC 15-jan-2008

Summary

Converter shaping tests	June 2008
Fast e ⁺ beam	June 2008
Slow e+ beam (W moderator)	Dec 2008
Neon moderator	2009
Trapping (wo buffer gaz)	2009

Depending on available money,

duplicate/improve or move slow e⁺ source to CERN experiment(s) ? Propose \overline{H}^+ experiment in ASACUSA framework (Nov. 2008)

Backups

Utilisation de H (proposition AEGIS)

La taille transverse du faisceau de \overline{H} neutres est de l'ordre de plusieurs cm

En utilisant des grilles fils horizontaux → distribution sensible à g tout en acceptant une grande taille de faisceau

Mesure du temps de vol entre les grilles

Fabrication de H* dans AEGIS

Vue d'ensemble AEGIS

A.P. Mills, UC Riverside

Traveling wave annihilation laser A.P. Mills, UC Riverside

•A photon traveling through a gas of Ps at rest with density n gathers more photons into its mode because of stimulated annihilation.

•Initially, the number M of photons in the laser mode grows exponentially with x, the distance traveled:

$$M = \exp\{n\sigma_{\rm s}x\}.$$

•The Ps has to have very slow velocities so that the Doppler shift of the annihilation photons is less than the line width $v/c \leq \Delta E/E = \alpha^{5}/2 = 10^{-11}$.

•The only possibility is for the Ps to be in the ground state of its container, i.e. in the Bose-Einstein condensed state, as pointed out by Liang and Dermer.