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NETWORK STRUCTURE
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IMAGE FEATURE EXTRACTION

• We used an E(2) equivariant convolutional neural network (CNN)
[Weiler and Cesa, 2019] for our feature extraction layer

• Equivariance is enforced in the structure by using convolution kernels expressed in a
steerable basis of the E(2) group:

k(x|w) =
8∑

ℓ=1
wℓ(r)Yℓ(α) (1)

where x = (r, α), Yℓ(α) = eiℓα are the basis vectors and the kernel weights wℓ(r) have
a radial symmetry.

• Produces a vector feature map that is equivariant to the actions of the E(2) group:

CE(2)[G(x̂)] = G[CE(2)(x̂)] (2)
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PSF ENCODING

• PSF can be computed using the uv sampling pattern and galaxy position

• The reconstructed images contain artifacts from the corresponding PSFs
• We first train an autoencoder to encode the PSFs to a latent space
•

{θ̂E, θ̂D} = argmin
{θE,θD}

Eh[∥h− ĥθD [zθE(h)]∥2] (3)

where ĥθD is the output from the decoder, zθE is the output from the encoder and
{θE,θD} the encoder-decoder architecture parameters.
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SIMULATING GALAXY IMAGES

• Population Model: Star-Forming Galaxies (SFGs) catalogue from the Tiered-Radio
Extragalactic Continuum Simulation (T- RECS) [Bonaldi et al., 2018]

• Isolated galaxies with galaxy center at antenna pointing: 128× 128 pixels

• Visibilities based on SKA-MID configuration: 197 antennas, 154k unique visibility
positions

• Visibilities are gridded followed by Inverse FFT to get dirty image xD

• PSF h is then deconvolved from the dirty image using MS-Clean to get reconstructed
image x̂
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FULL MODEL

(a) Reconstructed Images: 1000
MS-Clean cycles

(b) Reconstructed Images: 500
MS-Clean cycles

(c) Dirty Images

Figure 1: Trained/validated/tested on 16k/2k/2k galaxies-PSF pairs with varying size and intrinsic
ellipticity. Autoencoder pretrained using 80k PSFs
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MODEL BIAS

(a) Reconstructed Images (b) Dirty Images

Figure 2: Galaxies following a Sérsic brightness profile: I(r) = I0 exp[−( r
r0
)
1
n ] with index n drawn

from U(1, 4)
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COMPARISON WITH OTHER WORKS

(a) ShapeNet Deconvolution

(b) SuperCLASS Calibration

Figure 3: Tested on same test case (exp profile). ShapeNet has been trained/validated on same
dataset.
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SUMMARY

Table 1: Linear Bias in Ellipticity estimates (at the order of 10−3)

m1 c1 m2 c2

Exp Profile

Recon 500 1.0± 0.4 −1.1± 0.1 −0.3± 0.4 0.2± 0.1
Recon 1000 −3.4± 0.5 −1.6± 0.1 −1.2± 0.4 −0.8± 0.1

Dirty −0.6± 0.4 −0.7± 0.1 −0.4± 0.4 −0.1± 0.1
Shapenet Decon −168.1± 4.0 8.3± 1.4 −155.3± 4.1 −6.8± 1.0
SuperCLASS Calib −1.9± 1.9 13.8± 0.5 22.2± 3.0 −0.7± 0.7

Sersic Profile Recon 1.0± 0.3 −1.2± 0.1 −3.8± 0.3 −0.4± 0.1
Dirty −1.0± 0.4 0.2± 0.1 −0.8± 0.3 −0.3± 0.1
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REALISTIC NOISE

• Initial Approach: Vobsg = Vcalcg +N (0, σg/20) where σg = σ(Vcalcg ) for each galaxy g

• Realistic Situation: Vobsg = Vcalcg +N (0, σ) where σ =
2κBTsys
Aeff × 1

ns
√
2∆ντint

• More careful consideration of galaxy properties like flux and size, and visibility
weights
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RADIOLENSFIT [RIVI ET AL., 2016]

• Works using visibilities
• Galaxy brightness profile: I(r) = I0 exp(−r/α),
• Transformation matrix A with ellipticity parameters e = (e1, e2) such that:(

lr
mr

)
= Ax =

(
1− e1 −e2
−e2 1+ e1

)
×

(
l
m

)
• Observed visibility due to a galaxy at point k = (u, v) can be given by:

Vs(u, v) =
2πα2I0

|A|(1+ 4π2α2|A−⊺k|)3/2
× exp 2πik⊺x0 (4)

• Perform a Bayesian marginalization of the likelihood over I0, α and source centroid
position x0 = (l0,m0) ⇒ P(A|D)
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COMPARISON WITH RADIOLENSFIT

(a) RadioLensfit Measurement
MAE=4.1× 10−3 , RMSE=0.5× 10−2

(b) Neural Net trained with 200k xD − h pairs
MAE=9.7× 10−3 , RMSE=1.5× 10−2

Figure 4: Measurements made on common test (25× 500) set with exponential profile, Flux
50− 200 µJy
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ORIGINAL APPROACH: MS-CLEAN DECONVOLUTION
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HQS-PNP ALGORITHM [ZHANG ET AL., 2017]

• Problem: y = Hx+ ϵ

• HQS sol: Lµ(x, z) = 1
2∥y− Hx∥22 + λΦ(z) + µ

2 ∥x− z∥22
• Iterative Sol:

xk+1 = arg min
x

1
2∥y− Hx∥22 + µ∥x− zk∥22

zk+1 = arg min
z

µ

2 ∥xk+1 − z∥22 + λΦ(z)

• Sol:
xk+1 = (HTH+ µI)−1(HTy+ µzk)

zk+1 = arg min
z

1
2(
√

λ/µ)2
∥xk+1 − z∥22 + λΦ(z)

• zk+1 = Denoiser (xk+1,
√
λ/µ)
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RESULTS
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SHAPENET DECONVOLUTION [NAMMOUR ET AL., 2022]

• Tikhonov solution: x̃ = (HTH+ λΓTΓ)−1HTxD where H corresponds to the PSF operator,
Γ corresponds to Tikhonov linear filter and λ is the regularisation weight.

• A UNET architecture is then trained to learn the mapping b/w the Tikhonov output
and the true image.

• The network is trained to minimize the following loss function: l(x̂) = ∥x̂− x∥2+γM(x̂)

• M(x̂) =
6∑
i=1

ωi⟨x̂− x,ui⟩ is a shape constraint with {ωi} and {ui} are constant scalar

weights and images respectively



SUPERCLASS CALIBRATION [HARRISON ET AL., 2020]

• Reconstruct image by deconvolving the PSF from the dirty image and estimate
ellipticity ϵcalck

• In the residual image, inject model sources with the same size and flux properties,
but known ellipticity ϵinpi = {0, ±0.2375, ±0.475, ±0.7125, ±0.95}

• Simulate visibilities⇒ Dirty Image⇒ Reconstructed Image⇒ Measure ellipticity ϵobs

• Fit second order 2D polynomial bk(ϵinp1 , ϵinp2 ) = ϵobs1 − ϵinp1

• Calibrate observed ellipticities using ϵSC1,k = ϵcalc1,k − bk(ϵcalc1,k , ϵcalc2,k )

• Repeat for ϵ2
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