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Context and objectives
• Convergence map 𝜿 ∈ ℝ𝐾: isotropic dilation of the galaxy image.

• Proportional to the projected mass along the line of sight.
• Used to constrain cosmological parameters ⇒ variable of interest.
• However, 𝜿 cannot be directly measured.

• Shear map 𝜸 ∈ ℂ𝐾: anisotropic stretching of the galaxy image.
• Relationship between shear and convergence maps: 𝜸 = 𝐀𝜿, with 𝐀 ∈ ℝ𝐾×𝐾 (known).

Source galaxy, unlensed Convergence + shear
𝜅 = 1 and 𝛾 = 0.1 − 0.3 𝑖

Convergence only
𝜅 = 1
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• Shear map 𝜸 ∈ ℂ𝐾: anisotropic stretching of the galaxy image.
• Relationship between shear and convergence maps: 𝜸 = 𝐀𝜿, with 𝐀 ∈ ℝ𝐾×𝐾 (known).

Source galaxy, unlensed Convergence + shear
𝜅 = 1 and 𝛾 = 0.1 − 0.3 𝑖

Convergence only
𝜅 = 1

After mean-centering 
(mass-sheet degeneracy)

28

2



1 K. Osato, J. Liu, and Z. Haiman, “κTNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations,” Monthly Notices of 
the Royal Astronomical Society, vol. 502, no. 4, pp. 5593–5602, Apr. 2021

Context and objectives
Example with the κTNG simulated dataset1

Simulated convergence map Corresponding shear map (real and imaginary parts)

• As for the convergence map 𝜿, the true shear map 𝜸 cannot be directly measured.

• Unbiased estimator of 𝜸, obtained by measuring galaxy ellipticities: 𝜸 ⟵ 𝝐 − 𝝐

• Relation between 𝜸 (observable) and 𝜿 (quantity of interest):

𝜸 = 𝐀𝜿 + 𝒏,

with noise 𝒏 assumed Gaussian, zero-centered and with diagonal covariance matrix 𝚺.

• Noise level (standard deviation per pixel): 𝚺 𝑘, 𝑘 = σ/𝑁𝑘.
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Context and objectives
Example with the κTNG simulated dataset1

Simulated convergence map Corresponding shear map (real and imaginary parts)

• As for the convergence map 𝜿, the true shear map 𝜸 cannot be directly measured.

• Unbiased estimator of 𝜸, obtained by measuring galaxy ellipticities: 𝜸 ⟵ 𝝐 − 𝝐

• Relation between 𝜸 (observable) and 𝜿 (quantity of interest):

𝜸 = 𝐀𝜿 + 𝒏,

with noise 𝒏 assumed Gaussian, zero-centered and with diagonal covariance matrix 𝚺.

• Noise level (standard deviation per pixel): 𝚺 𝑘, 𝑘 = σ/𝑁𝑘.
Intrinsic ellipticity (std)

Nb measured galaxies
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Expected miscoverage rate
(% of pixels outside the bounds)

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Confidence level ∈ 0, 1

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

May be random

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Depends on 𝜸 = 𝐀𝜿 + 𝒏

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)
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Context and objectives
Noisy shear maps (noise variance taken from the COSMOS shape catalog1)

Objective: given 𝜸, estimate ෝ𝜿− and ෝ𝜿+ such that

𝔼 𝐿 𝜿, ෝ𝜿−, ෝ𝜿+ ≤ 𝛼.

• Over which uncertainties the expected value is calculated?

1 https://astro.uni-bonn.de/en/m/schrabba/research

Depends on 𝜸 = 𝐀𝜿 + 𝒏

Two sources of randomness

Simulated convergence map Corresponding shear map with noise (real and imaginary parts)

36

4



Proposed approach

1. Compute a point estimate ෝ𝜿 and a residual ො𝒓 using two families of mass 
mapping methods:

a. Model-driven methods: Kaiser-Squires inversion,1 proximal Wiener filtering,2 MCALens;3

b. Data-driven (deep-learning-based) methods: DeepMass,4 DLPosterior,5 other method?

2. Set initial bounds:

ෝ𝜿− ≔ ෝ𝜿 − ො𝒓 and    ෝ𝜿+ ≔ ෝ𝜿 + ො𝒓

3. Post-processing: adjust residual ො𝒓 using a calibration set.

→ Distribution-free UQ, does not assume any prior distribution on 𝜿.

→Works for any blackbox prediction method, including deep learning.

1 Kaiser, N. & Squires, G. Astrophysical Journal 404, 441–450 (1993)
2 Bobin, J., Starck, J.-L., Sureau, F. & Fadili, J. Advances in Astronomy 2012, e703217 (2012)
3 Starck, J.-L., Themelis, K. E., Jeffrey, N., Peel, A. & Lanusse, F. A&A 649, A99 (2021)
4 Jeffrey, N., Lanusse, F., Lahav, O. & Starck, J.-L. MNRAS 492, 5023–5029 (2020)
5 Remy, B. et al. A&A 672, A51 (2023)
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Reconstruction accuracy

38

Ground truth Kaiser-Squires Iterative Wiener MCALens DeepMass

RMSE = 31.8 RMSE = 18.3 RMSE = 18.0 RMSE = 17.4
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Deep-learning-based methods
DeepMass

• Minimizing the MSE 𝐹𝚯 𝜸 − 𝜿 2
2 evaluated on the training set →

DeepMass approximates the posterior mean:

𝐹෡𝚯 𝜸 ≈ ෝ𝜿 ∶= ′𝜿׭ 𝑝 𝜿′ 𝜸) 𝑑𝜿′.

• Remark about DLPosterior: MCMC sampling, prior learned from data →
ෝ𝜿 can be approximated by averaging over samples.

39

Wiener filtering
(one iteration) UNet
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Deep-learning-based methods
Strengths and weaknesses

• Objective: implement a DL mass mapping method, satisfying:
• Fast inference→ we need a point estimate instead of sampling from the full 

posterior.

• Does not need re-training for each new noise covariance matrix or mask.

• Proposed solution: iterative algorithm with plug-and-play (PnP).
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PnP forward-backward algorithm

• Objective: find the MAP estimate ෝ𝜿 satisfying:

• Iterative forward-backward algorithm:

• PnP: replace the proximal operator by a deep denoiser trained on a 
dataset of simulated convergence maps, corrupted by a white noise 
of variance 𝜇.
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PnP forward-backward algorithm

• Objective: find the MAP estimate ෝ𝜿 satisfying:

• Iterative forward-backward algorithm:

• PnP: replace the proximal operator by a deep denoiser trained on a 
dataset of simulated convergence maps, corrupted by a white noise 
of variance 𝜇.

42

Acts like a denoiser for 
images corrupted by a 
white noise of variance 𝜇
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• How to get a first estimation of the residual ො𝒓?

• Model-driven methods: propagate noise realizations through the pipeline.

• DLPosterior: uncertainty embedded in posterior sampling.

• DeepMass: possible to use moment networks.1 Idea: minimizing the MSE 

𝐺𝛀 𝜸 − 𝜿 − 𝐹෡𝚯 𝜸
2

2

2

evaluated on the training set.

• New method: use a similar PnP FB algorithm with adapted denoiser?

Uncertainty estimation before calibration

431 Jeffrey, N. & Wandelt, B. D. Third Workshop on Machine Learning and the Physical Sciences (NeurIPS 2020)
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UNet to be
trained
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Uncertainty estimation before calibration
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Already trained UNet
(point estimate)
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Conclusion

• New deep-learning-based mass mapping method, fast at inference and 
generalizable to any noise covariance matrix / any mask.

• Includes initial uncertainty estimation.

• To be implemented; new results coming soon.

• Distribution-free UQ for mass mapping: provides coverage guarantees with 
a limited number of calibration examples.

• Works for any mass mapping method, including deep learning-based 
approaches.

• Next steps:
• train on several cosmologies → CosmoSLICS;
• extend results to the sphere;
• UQ: focus on high-density regions.
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