

TOSCA – New weak Lensing statistics: optimizing the synergy between *Euclid* and *SKA*

http://tosca.cosmostat.org/

Comité « Physique subatomique et astrophysique »

TOSCA

Start: 01/04/2023 End: 30th Sept 2027

Duration: 54 months

4 Partners

CEA Paris-Saclay: J.L. Starck, M. Kilbinger, S. Farrens, C. Mc Lean Dalay, V. TS

Univ. de La Côte d'Azur: A.Ferrari, S. Prunet, C. Richard, M. Spinelli, P. Tripathi, S. Wang

ENSI Caen: J.Fadili, H. Leterme Univ. Genève: M. Kunz ESA: V. Pettorino

Having data from different surveys is an opportunity and a challenge:

- opportunity to cross-validate systematics and better constrain cosmological parameters
- different wavelengths require different methods. Space surveys like Euclid will observe
 images in real space and in the visible frequency range; observations from SKA provide
 measures in Fourier space, implying different technical challenges to reconstruct radio
 images in real, pixel space.

TOSCA

PROJECT WORK PACKAGES

Here is the break out of the analysis, and partners involved

WP1

Image Map Reconstruction from large surveys such as Euclid/SKA

NICE (A.FERRARI)

1 PhD x 3 years in Nice

WP2

Machine Learning for Convergence
Map Reconstruction

ENSI CAEN

(J.FADILI)

CEA

(J.-L. STARCK)

1 postdoc x 2 years in CAEN

WP3

Theoretical predictions for Weak Lensing observables in Euclid / SKA

M. Kilbinger

(V.PETTORINO)

UNIV. GENEVA

1 postdoc x 3 years at CEA

Includes experts in: SKAO radio image reconstruction (OCA), mathematical imaging (ENSICAEN), theory (Geneva) and Euclid key members in weak lensing and cosmology (CEA).

Timeline

We are here

WP1 - from visibilities to galaxy shapes

Milestones:

M-m6: bibliography and implementation of SuperCAL in RASCIL

M-m18: development and implementation of DSCR1 M-m30: development and implementation of DSCR2

M-m36: evaluation of proposed algorithm performances for shear measurement with WP2

Deliverables:

D-m6: Fully functional implementation of SuperCAL in RASCIL.

D-m20: Submission of the first publication on Deep Shape Constraint Reconstruction.

D-m32: Submission of the second publication on Deep Shape Constraint Reconstruction.

D-m34 Integrate in RASCIL a state-of-the-art reconstruction algorithm optimised for the shear measurement.

WP2 - from shapes to convergence maps

Lead: this WP will be shared by CEA (Jean-Luc Starck) and ENSICaen (Jalal Fadili) with contribution by Sam Farrens and Joana Frontera-Pons (CEA). A postdoc will be involved in this WP on the following tasks, will be hosted at ENSICaen and will be co-supervised by Jalal Fadili and Jean-Luc Starck.

Milestones:

M-m24: A new mass mapping software package that generalises well and quantifies uncertainties.

M-m38: A new mass mapping software package that is an extension of the previous one on the sphere.

Deliverables:

D-m24: Submission of a first publication describing the developed algorithm relative to M-m24.

D-m38: Submission of a second publication describing the developed algorithm relative to M-m38.

WP3 - synergy and cosmological parameters

Milestones:

(M-m12) Learn to use CLOE and cobaya codes and reproduce benchmark plots provided by Euclid pipeline

(M-m16) Implementation of the binned parameterisation in the background expansion and on perturbations, based on CosmicFish code developed in CosmoStat by former postdoc S. Casas (M-m21) Forecasts for *Euclid / SKA*

(M-m30) Tests of the new tomographic estimator for the gravitational lensing potential

(M-m44) Cross-correlations in the photometric probes and between Intensity Mapping (IM) in SKA and Euclid power spectrum

Deliverables:

(D-m22) Submission of the first publication on a tomographic analysis of dark energy background and perturbations, using simulated data.

(D-m32) Submission of the second publication on impact of different statistics and a new tomographic estimator for the gravitational lensing potential; application to mass maps delivered by WP2.

(D-m46) Submission of the third publication on final results, integrated with the updated pipeline from WP2, and Modified Boltzmann code, publicly available, and suitable to be interfaced with CLOE.

WP3 - synergy and cosmological parameters

M-m16 Learn CLOE, cobaya, reproduce Euclid benchmark plots: DONE:

- Lisa Goh has become expert in CLOE; she is using CLOE interfaced with cobaya and CosmoSIS; running MCMCs for Euclid overview paper (Mellier et al. 2024), and CLOE prelaunch papers in prep.

M-m20 Background expansion and perturbations. MODIFIED:

- Work done on tomographic coupled dark energy.
- Published in Goh, Gomez-Valent, Pettorino & Kilbinger (2023); code implemented and published

M-m25 Constraints for Euclid

- Have to wait for Euclid DR1 (or later) data

Other work in progress

- Constraints on dark energy and modified gravity from UNIONS-3500 (Goh/CosmoStat people et al. in prep., w/Isaac Tutusaus). Plans to use Weyl tensor, as another estimator of LSS within modified gravity.
- SBI model for UNIONS and Euclid weak lensing, allowing to derived constraints from field-level and higher-order statistics. Can include small-scale physics via baryonification, forward-modelling systematics (Guerrini, MK et al. in prep.)
 - Emulator for l_1 norm and other HOS (Vilasini in prep.);
- Synergies between optical and radio; kinematic lensing using shapes and spectroscopy and/or polarization; ALMA? (Daley)

