

The Pathway to Radio Weak Lensing

Ian Harrison TOSCA Meeting 7 November 2024

Slides at: bit.ly/ianh_tosca24

CARDIFF UNIVERSITY Introduction PRIFYSGOL CAERDYD Weak Lensing Cosmology

- Requires:
 - Exquisite systematics control
 - 1+ galaxies per arcmin² over 000s
 deg²
- Therefore optical / near-IR experiments

- Number density of resolved galaxies in current radio surveys too low
- SKA will do surveys capable of WL cosmology
 3-10 galaxies arcmin⁻² over 5k-30k deg²
 - Surveys close to these will be done with

SKA anyway, although there are optimisations for weak lensing

CARDIFF
UNIVERSITYRadio Weak LensingPRIFYSGOL
CAERDYDMotivation from SKA(0)

- Weak lensing will use SKA-MID
- 350-1760 MHz frequencies
- 'Resolution' of ~0.1 arcsec
- SKA Phase 1
 - Cost cap € 600m
 - First idea ~1990, design solidified 2017
 - Collaboration of 14 countries
 - Construction has begun!
 ~2030 large surveys
 - 194 15m dishes
- 🛛 😥 The full SKA 💭
 - ~2035+
 - ~2000 dishes
 - Longer baselines across Africa

CARDIFF
UNIVERSITYRadio Weak LensingPRIFYSGOL
CAERDYDSKAO Cosmology Forecasts

- SKA Phase I weak lensing comparable in power to Stage III surveys such as DES, KiDS, HSC
- Radio-optical crosscorrelations keep statistical power, gain robustness to systematics

 $\langle \tilde{\gamma}_o \tilde{\gamma}_r \rangle = \langle \gamma \gamma \rangle + \langle \gamma \gamma_o^s \rangle + \langle \gamma \gamma_r^s \rangle + \langle \gamma_o^s \gamma_r^s \rangle$

CARDIFF
UNIVERSITYRadio Weak LensingPRIFYSGOL
CAERDYDSKAO Cosmology Forecasts

 Full SKA (SKA2) comparable in power to Stage IV surveys such as *Euclid*, LSST

CARDIFF
UNIVERSITYRadio Weak LensingPRIFYSGOL
CAERDYDSKAO Cosmology Forecasts

SKA Cosmology Science Working Group + IH (2020)

Radio-radio +

radio-optical

calibration

CARDIFF UNIVERSITY **Radio Weak Lensing** PRIFYSGOL **SKAO Cosmology Forecasts** C^{AE}RD^Y₽

Radio-optical cross-correlations keep statistical power, lacksquaregain robustness to systematics

Camera + IH et al (2017) SKA Cosmology Science Working Group + IH (2020)

- Big leap from tentative detections to Stage 4 'precision cosmology' surveys
- Pre 2010, design a bespoke Stage 1 'discovery' survey: SuperCLASS

CARDIFF UNIVERSITY Radio Weak Lensing A Brief History

- Big leap from tentative detections to Stage 4 'precision cosmology' surveys
- Pre 2010, design a bespoke Stage 1 'discovery' survey: SuperCLASS

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

New – Forecast updates

- Re-done 2016 forecasts with SKA1(AA4) x *Euclid*
- Cross-correlations calibrate additive and multiplicative systematics
 - Show explicitly with MCMC chains (previously by construction with Fishers)

Radio Weak Lensing

PROMISES

- Highly deterministic PSF
- Long tail in source redshift distribution
- Large sky areas accessible from the ground

CARDIFF UNIVERSITY Radio Weak Lensing PRIFYSGOL CAERDYD Promises

- Extra information in the radio can mitigate intrinsic alignments
 - Polarisation Brown & Battye (2011), Whittaker et al (2015)
 - HI rotational velocities

Morales (2006), Huff et al (2015)

Radio Weak Lensing

CHALLENGES

CARDIFF UNIVERSITY Radio Weak Lensing CAERDYD Challenges

• Interferometer data: PSF highly complicated

- $\lambda/d \sim 0.1$ arcsec implies $d \sim 100$ km
- Instead correlate signals from dishes ~100 km apart
- Each combination gives one Fourier mode
 - *d* large gives small scales in image
 - *d* small gives large scales in image
- *N*(*N*-1) combinations and Earth rotation gives many samples of Fourier plane

Observe with these dishes in Get data at these locations in real space Fourier space

Get this PSF in real space (log scale)

Observe with these dishes in Get data at these locations in real space Fourier space

Get this PSF in real space

- True sky is unknown and underconstrained
 - PSF sidelobes extend across sky
 - flux from all sources mixed together
 - local in image non-local in Fourier
- Deconvolution algorithms exist but are non-linear, so true PSF hard to determine

Precision weak lensing shape measurement will be hard!

CARDIFF UNIVERSITY Radio Weak Lensing PRIFYSGOL CAERDYD Challenges

- Source redshifts are hard due to (nearly) featureless spectrum
 - Without tomography lose lots of constraining power!
 - Synchrotron emission from star forming galaxies
 - Could try 'forced' fitting of HI lines Inter al (2017)
 - Otherwise rely on cross-matches in near-IR, optical

Radio Weak Lensing

PAST EFFORTS

- Sole radio weak lensing detection in 2004
- Measure shapes in Fourier
 plane from VLA FIRST survey
 - Not designed as a weak lensing survey
 - Low number density, but very wide
- Make a 3.0σ to 3.6σ detection of an aperture mass variance across survey
- Detection significance increases when low-redshift sources removed

(Chang Refregier & Helfand 2004)

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

Developments – Observations

- SDSSxFIRST
 - 2.7σ on cross-power spectrum (Demetroullas & Brown 2016)
 - 10σ on galaxy-galaxy lensing (Demetroullas & Brown 2017)
- JVLA-COSMOS
 - 4.7σ on radio-optical shape correlation (Tunbridge et al 2016; Hillier et al 2019)
- SuperCLASS DR1
 - Upper limit on cluster lensing

- Observe field at same frequencies with US-based JVLA telescope, UK-based e-MERLIN
- Complementary baseline
 lengths
- Cover relevant parts of the Fourier plane for weak lensing shear signal
- Ideally, would combine data in Fourier space
 - This is hard due to real world foibles with the data

Battye + IH et al (2020)

 Optical data allows detection of clusters and weak lensing signal

- Radio shapes for 440 sources in the 0.26 deg² (~0.47 arcmin⁻²)
- ...too much shape noise for detection of radio or radio-optical shear power spectrum

- DR2 data combination between JVLA and e-Merlin adds sensitivity to small scales and improves PSF
- Looks like improve to ~0.7 gal arcmin⁻² over 0.75 deg²

CARDIFF
UNIVERSITYRadio Weak LensingPRIFYSGOL
CAERDYDPrecursor & Pathfinder Surveys

- Can we do weak lensing with other surveys?
- Images do not appear reliable enough(?)
- racs_dr1_sources_galacticcut_v2
 racs_mid_sources_v01
 MIGHTEE_Continuum_Early_Science_COSMOS_r0p0
 MIGHTEE_Continuum_Early_Science_COSMOS_r-1p2
 LoTSS_DR2_v110_masked
 LoLSS_DR1_v1
 MIGHTEE_Continuum_Early_Science_XMMLSS_r0p0_circ

- Patel et al 2015 looked at SKA1-Mid simulations
- Find *m*, *c* biases factor >10 too large from images made using traditional deconvolution methods
 - Some promise of uv-plane shapelet methods used in Chang et al 2004

- SuperCLASS shapes measured in real space JVLA-only images using 'SuperCALS'
 - Calibration simulations on a source-by-source basis
 - Inject 'ring test' of simulated sources onto CLEAN residual image
 - Measure recovered linear bias model
 - Apply correction to shape measured in real image

Residual

 Rivi & Miller since produced uv-plane fitting methods

(as well as image-plane method from DR1)

- Faceting to reduce necessary number of simultaneous fits
- *lensfit*-style marginalisation over nuisance parameters
- See also Hamiltonian Monte Carlo approach Rivi + IH et al (2019)
- Have compared on the same simulations with SuperCALS for SuperCLASS DR2

Radio Weak Lensing

FUTURE WORK

CARDIFF UNIVERSITY PRIFYSGOL CAERDYD

- Propose 2 RWL chapters
 - Cosmic Shear Forecasts
 - Could also include WL beyond 2pt, beyond total intensity shape measurements, more?
 - A comparison of multiple RWL shape measurement algorithms on the same simulations
- Deadline:
 - A broad kernel from 28 February 2025 to "late 2025"

Simulation Configuration

- uv coverage of Rivi et al 2019
 - SKA1-Mid (AA4)
 - 8h track, ~zenith, 1.4GHz, 1 broad channel
 - 6.4Gb per measurement set
- Source catalogue from T-RECS (Bonaldi et al 2019) cut to be nice ("Nice Cut"?)
 - SFGs only
 - Realistic ellipticity, size distributions
 - Dynamic range 10 (i.e. SNR 10-100)
- Simulation of visibilities via simuclass / CASA
 - Verified to match Marzia's own simulations
- Noise regimes
 - Low noise SNR 100-1000
 - 'Realistic' noise SNR 10-100
- Provide as a measurement set
- Provide truth catalogue

- Nov 23 SKAO
 "<u>Staged Delivery Memo</u>"
- New AA* deployment configuration
 - Fewer antennae than AA4 design configuration
 - Particularly on >40km baselines
- AA* not good(!) for weak lensing
- AND any science case which requires source classification

- Nov 23 SKAO "<u>Staged Delivery Memo</u>"
- New AA* deployment configuration
 - Fewer antennae than AA4 design configuration
 - Particularly on >40km baselines
- AA* not good(!) for weak lensing
- AND any science case which requires source classification

- Radio weak lensing with SKA \approx DES-Y6
 - Complete ~2033 at best
 - Cross-correlations have same statistical power but remove systematics
 - Can reduce IA, shape noise with polarisation, kinematics
- Shape measurement from interferometers is hard
- For 2025 SKA Science Book, expect a shape measurement on simulations chapter
 - Happy to circulate common simulations