PSF Systematics Quantification

November 7, 2024

TOSCA meeting, Nice

UNIONS

Martin Kilbinger, France CEA Paris-Saclay, CosmoStat <u>martin.kilbinger@cea.fr</u>

With Sacha Guerrini, Fabian Hervas Peters, Ziwen Zhang and others

- Weak lensing shapes and the PSF
- PSF, star & galaxy cross-correlations
- Quantifying and calibrating PSF systematics
- Spin-consistent calculations

Weak gravitational lensing

- Probe of (dark) matter distribution at large scales, and in clusters and galaxies
- Measures density amount and fluctuations amplitude (" σ_8 / S_8 tension")
- Dark-energy dominated epoch

Dvornik, Heymans, Asgari et al. 2022

```
- KiDS 2 × 2 pt + SMF

- KiDS + BOSS 3 × 2 pt

---KiDS cosmic shear

- Planck
```


- "Weak" = galaxy shape distortions at %-level
 - $\circ \quad \ll$ intrinsic galaxy shapes
 - « atmosphere & telescope distortions: PSF residuals
- Need to quantify and calibrate PSF contributions

Weak lensing and galaxy shapes

[from Y. Mellier] Galaxy ellipticities are an estimator of the local shear.

Observed galaxy ellipticity is (complex) sum of intrinsic ellipticity and shear

$$e^{g} = e^{s} + g$$

Galaxy shapes and PSF

- Effect of PSF on galaxies:
 - Rounding from isotropic part (seeing)
 - Shearing from anisotropic part
- If not corrected:
 - biased shape and estimated shear
 - spurious shear correlations
- Imperfect correction:

 $\delta \boldsymbol{e}^{\mathbf{g}} = \alpha \, \underbrace{\mathbf{e}_{\text{model}}}_{+\beta} + \beta \, \underbrace{(\mathbf{e}_{*} - \mathbf{e}_{\text{model}})}_{+\eta} + \eta$

- Leakage (of PSF into galaxy shape)
- Errors from PSF residuals

Ellipticity error

add residual

$$e^{g} = e^{s} + g + \delta e^{g}$$

Leakage

with

Martin Kilbinger (CEA CosmoStat)

PSF error propagation

With this error model $e^{g} = e^{s} + g + \delta e^{g}$ with $\delta e^{g} = \alpha \underbrace{\mathbf{e}_{\text{model}}}_{\text{Leakage}} + \beta \underbrace{(\mathbf{e}_{*} - \mathbf{e}_{\text{model}})}_{\text{Ellipticity error}} + \eta \underbrace{\left(\mathbf{e}_{*} \frac{T_{*} - T_{\text{model}}}{T_{*}}\right)}_{\mathbf{e}_{\text{model}}}$ Size error

the PSF residuals are additive biases.

+ $\langle \delta e^{g} \delta e^{g} \rangle$ +mixed terms $\langle gg \rangle$ cosmic shear observed corr. o-statistics 6 *o*-statistics [Rowe 2010, Jarvis et al. 2016] **PSF** Past assumption [Paulin-Henriksson 2008]: $\beta = \eta = 1$. Cross-Correlation But: we can infer α , β , η from the catalogues.

[Zhang, MK et al. 2024] small multiplicative bias from PSF

PSF

Martin Kilbinger (CEA CosmoStat)

Galaxy - star cross-correlations

Measure galaxy - PSF cross-correlations (*r*-statistics):

and solve

$$egin{pmatrix} au_{0,1} \ au_{2,1} \ au_{2,1} \ au_{5,1} \ arphi_{5,1} \ arphi_{5,1} \ arphi_{5,1} \ arphi_{5,1} \ arphi_{5,1} \ arphi_{4,1} \ arphi_{5,1} \ arphi_{4,1} \ arphi_{3,1} \ arphi_{5,n} \ arphi_{2,n} \ arphi_{2,n} \ arphi_{1,n} \ arphi_{4,n} \ arphi_{4,n} \ arphi_{4,n} \ arphi_{3,n} \ \end{pmatrix} egin{pmatrix} lpha \ lpha \ arphi_{5,n} \ arphi_{1,n} \ arphi_{4,n} \ arphi_{4,n} \ arphi_{3,n} \ \end{pmatrix}$$

3 τ -statistics

 $(e^{g}\delta e^{g})$

for free parameters α , β , η , using MCMC [Gatti et al. 2021] or least squares.

Need covariance of τ .

Covariance of τ -statistics

• Jackknife resampling.

Noisy, biased low on large scales, sensitive to patching & number density fluctuations, need large sky area.

• Mock simulations.

Need large number, slow, difficult to include PSF (residuals) and galaxy - PSF correlations.

• Semi-analytical.

Follows analytical formalism from Schneider, van Waerbeke, MK & Mellier (2002). Uses measured τ - and ϱ -statistics. Assumes normal distributions, extrapolates correlations. Noise-free, fast, any sky area, includes all correlations. [Guerrini, MK, Leterme et al. to be submitted.]

Covariance of τ -statistics

Martin Kilbinger (CEA CosmoStat)

Variance of τ

- Good agreement on small scales
- Slight offset on large scales
- Shot noise on small scales
- Cosmic variance on large scales

Parameter degeneracy

Martin Kilbinger (CEA CosmoStat)

PSF leakage calibration

Ignoring PSF residuals, we can estimate PSF leakage $\delta e^{g} = \alpha e_{model} + c$ via regression, using PSF interpolated to galaxy positions.

Calibrate by subtracting best-fit $\alpha e_{\text{model}} + c$ from each galaxy.

PSF leakage calibration

Ignoring PSF residuals, we can estimate PSF leakage $\delta e^{g} = \alpha e_{model} + c$ via regression, using PSF interpolated to galaxy positions.

Either compute global α or bin by galaxy property. Important if correlated with shear, redshift, ...

PSF leakage calibration

What about a mixed-component leakage,

e.g.
$$\delta e_1^{\rm g} = \alpha_{12} \, e_2^{\rm p} + c_1$$
 ?

Leakage is 2x2 matrix equation, need to fit coupled 2D function

$$\delta e^{\rm g}_i = c_i + \sum_{j=1}^2 \alpha_{ij} e^{\rm p}_j$$

What about a mixed-component leakage,

e.g.
$$\delta e_1^{\rm g} = \alpha_{12} \, e_{2, \rm model} + c_1$$
 ?

Can use quadratic model

$$\delta e_{i}^{\rm g} = c_{i} + \sum_{j=1}^{2} \alpha_{ij} e_{j}^{\rm p} + \sum_{j=1}^{2} \sum_{k=j}^{2} q_{ijk} e_{j}^{\rm p} e_{k}^{\rm p}$$

Can decompose leakage matrix into spin components

$$\boldsymbol{\alpha} = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} = \begin{pmatrix} \alpha_0^{\Re} + \alpha_4^{\Re} & -\alpha_0^{\Im} + \alpha_4^{\Im} \\ \alpha_0^{\Im} + \alpha_4^{\Im} & \alpha_0^{\Re} - \alpha_4^{\Re} \end{pmatrix}$$

Can decompose leakage matrix into spin components

$$\boldsymbol{\alpha} = \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} = \begin{pmatrix} \alpha_0^{\Re} + \alpha_4^{\Re} & -\alpha_0^{\Im} + \alpha_4^{\Im} \\ \alpha_0^{\Im} + \alpha_4^{\Im} & \alpha_0^{\Re} - \alpha_4^{\Re} \end{pmatrix}$$

Can decompose leakage matrix into spin components

$$\boldsymbol{\alpha} = \left(\begin{array}{cc} \alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22} \end{array}\right) = \left(\begin{array}{cc} \alpha_0^{\Re} + \alpha_4^{\Re} & -\alpha_0^{\Im} + \alpha_4^{\Im} \\ \alpha_0^{\Im} + \alpha_4^{\Im} & \alpha_0^{\Re} - \alpha_4^{\Re} \end{array}\right)$$

PSF leakage
$$\delta e^{g} = \begin{pmatrix} \alpha_{0}^{R} + \alpha_{4}^{R} & -\alpha_{0}^{3} + \alpha_{4}^{3} \\ \alpha_{0}^{3} + \alpha_{4}^{3} & \alpha_{0}^{R} - \alpha_{4}^{R} \end{pmatrix} e^{p}$$
spin-0 + spin-4 complex $\alpha = \begin{pmatrix} \alpha_{0}^{R} + \alpha_{4}^{R} & -\alpha_{0}^{3} + \alpha_{4}^{3} \\ \alpha_{0}^{3} + \alpha_{4}^{3} & \alpha_{0}^{R} - \alpha_{4}^{R} \end{pmatrix}$ e^{p} spin-4 modulation, e. g. $\alpha_{4} = c\left(1 - \frac{1}{2}\cos^{4}\phi\right)e^{4i\phi}$

PSF leakage
spin-0 + spin-4 complex
$$\alpha = \begin{pmatrix} \alpha_0^{\Re} + \alpha_4^{\Re} & -\alpha_0^{\Im} + \alpha_4^{\Im} \\ \alpha_0^{\Im} + \alpha_4^{\Im} & \alpha_0^{\Im} + \alpha_4^{\Im} \\ \alpha_0^{\Im} + \alpha_4^{\Im} & \alpha_0^{\Re} - \alpha_4^{\Re} \end{pmatrix}$$

$$e^{p}$$

$$spin-4 \text{ modulation, e. g. } \alpha_4 = c\left(1 - \frac{1}{2}\cos^4\phi\right)e^{4i\phi}$$

PSF leakage
spin-0 + spin-4 complex
$$\alpha = \begin{pmatrix} \alpha_0^{\mathfrak{R}} + \alpha_4^{\mathfrak{R}} & -\alpha_0^{\mathfrak{R}} + \alpha_4^{\mathfrak{R}} \\ \alpha_0^{\mathfrak{R}} + \alpha_4^{\mathfrak{R}} & -\alpha_0^{\mathfrak{R}} + \alpha_4^{\mathfrak{R}} \\ \alpha_0^{\mathfrak{R}} + \alpha_4^{\mathfrak{R}} & \alpha_0^{\mathfrak{R}} - \alpha_4^{\mathfrak{R}} \end{pmatrix}$$

$$e^{p}$$

$$spin-4 \text{ modulation, e. g. } \alpha_4 = c\left(1 - \frac{1}{2}\cos^4\phi\right)e^{4i\phi}$$

PSF leakage
spin-0 + spin-4 complex
$$\alpha = \begin{pmatrix} \alpha_0^{\mathfrak{R}} + \alpha_4^{\mathfrak{R}} & -\alpha_0^{\mathfrak{I}} + \alpha_4^{\mathfrak{I}} \\ \alpha_0^{\mathfrak{I}} + \alpha_4^{\mathfrak{I}} & \alpha_0^{\mathfrak{R}} - \alpha_4^{\mathfrak{I}} \\ \alpha_0^{\mathfrak{I}} + \alpha_4^{\mathfrak{I}} & \alpha_0^{\mathfrak{R}} - \alpha_4^{\mathfrak{R}} \end{pmatrix}$$

$$e^{\mathfrak{p}}$$
spin-4 modulation, e. g. $\alpha_4 = c\left(1 - \frac{1}{2}\cos^4\phi\right)e^{4i\phi}$

Summary

- Quantify PSF additive biases to cosmic-shear two-point function.
- Calibrate by:
 - Subtracting ξ_{PSF}^{sys} from cosmological signal
 - Marginalising over α , β , η , provide priors.
 - \circ Subtract PSF leakage αe^{p}
- Create PSF systematics maps for forward modelling (e.g. SBI). Use for any (higher-order) statistics.
- Full spin-consistent allow for flexible, physically meaningful PSF contamination model

Backup slides

UNIONS: Ultra-violet Near-Infrared Optical Northern Survey **CFIS:** Canada-France Imaging Survey

Large imaging survey (4,800 deg²) in the Northern hemisphere with CFTH in optical bands

P.I.: Jean-Charles Cuillandre (DAp) & Alain McConnachie (Victoria/Canada)

- Optical bands for Euclid for photometric redshifts
- Weak lensing
- Milky Way dynamics
- Large-scale structure
- Galaxy evolution

www.skysurvey.cc

UNIONS/CFIS vs. SDSS

UNIONS/CFIS

Best wide-field imager on CFHT ever.

Improvements (2011 - 2014)

UNIONS is basically a static LSST in the North. Unique combination of depth, area, and image quality (unmatched before Euclid, Rubin, Roman, CSS-OS, WFST!)

UNIONS depth

Photo-z depth metric proxy (for all): point source in 2 arcseconds diameter aperture, 100

- Euclid (median over the Euclid sky): VIS=25.0, Y=J=H=23.5
- DES in Euclid DR1/2/3: g=24.7, r=24.4, i=23.8, z=23.1
- UNIONS in Euclid DR1: u=23.6, g=24.5, r=24.1, i=23.2, z=23.4
- UNIONS in Euclid DR2: *u*=23.6, *g*=24.5, *r*=24.1, *i*=23.4, *z*=23.4
- UNIONS in Euclid DR3: *u*=23.6, *g*=24.5, *r*=24.1, *i*=23.6, *z*=23.4
- Rubin LSST* Y1 in Euclid DR2: *u*=23.7, *g*=24.9, *r*=25.0, *i*=24.3, *z*=23.6
- Rubin LSST* Y1 to Y4 in Euclid DR3: u=24.4, g=25.6, r=25.7, i=25.0, z=24.3

*Rubin-LSST main releases depth with point source PSF performance scaled to the 2" diam. metric

UNIONS ≈ LSST Year 1 depths

UNIONS and other surveys

Martin Kilbinger (CEA CosmoStat, France)

Galaxy - star cross-correlations

Measure galaxy - PSF cross-correlations (*r*-statistics):

and solve

$$\begin{aligned} \tau_0(\vartheta) &= \alpha \,\rho_0(\vartheta) + \beta \,\rho_2(\vartheta) + \eta \,\rho_5(\vartheta); \\ \tau_2(\vartheta) &= \alpha \,\rho_2(\vartheta) + \beta \,\rho_1(\vartheta) + \eta \,\rho_4(\vartheta); \\ \tau_5(\vartheta) &= \alpha \,\rho_5(\vartheta) + \beta \,\rho_4(\vartheta) + \eta \,\rho_3(\vartheta). \end{aligned}$$

 τ -statistics

 $\langle e^{\mathrm{g}} \delta e^{\mathrm{g}} \rangle$

for free parameters α , β , η , using MCMC [Gatti et al. 2021] or least squares.

Need covariance of τ .

Martin Kilbinger (CEA CosmoStat)

