

Euclid DR1 & SKAO Pathfinders/Precursors How to synergise between them, now that they all exist

Finanziato dall'Unione europea **NextGenerationEU**

Atefano Camera

Department of Physics, Alma Felix University of Turin, Italy

Ministero dell'Università e della Ricerca

Italia**domani** PIANO NAZIONALE DI RIPRESA E RESILIENZA

The Euclid Satellite

European Space Agency

Euclid

Euclid's specs

		SURVI	EYS			
	Area (deg2)	Description		Description		
Wide Survey	15,000 (required)	Step and stare with 4 dither pointings per step.				
	20,000 (goal)					
Deep Survey	40	In at least 2 patches of $> 10 \text{ deg}^2$				
_			2 magnitudes deeper than wide survey			
		PAYLC	DAD			
Telescope		1.2 m Korsch, 3 mirror anastigmat, f=24.5 m				
Instrument	VIS	NISP				
Field-of-View	$0.787 \times 0.709 \text{ deg}^2$	$0.763 \times 0.722 \text{ deg}^2$				
Capability	Visual Imaging	NIR Imaging Photometry NIR Spectroscopy				
Wavelength range	550–900 nm	Y (920-	J (1146-1372	Н (1372-	1100-2000 nm	
		1146nm),	nm)	2000nm)		
Sensitivity	24.5 mag	24 mag	24 mag	24 mag	$3 \ 10^{-16} \text{ erg cm}{-2 \text{ s}{-1}}$	
	10σ extended source	5σ point	5σ point	5σ point	3.5σ unresolved line	
		source	source	source	flux	
Detector	26			16		
Detector	36 arrays	16 arrays				
Technology	4k×4k CCD	2k×2k NIK sensitive HgCdTe detectors				
Pixel Size	0.1 arcsec	0.3 arcsec 0.3 arcsec				
Spectral resolution					R=250	

n	•	. •
Desc	rin	f10n

Euclid's specs

Euclid's science

- Euclid's main scientific objectives:
 - Reach a precision on dark energy parameters $(w_0, w_a) < (2\%, 10\%)$
 - Measure the growth factor exponent γ better than 2 %
 - Measure the sum of neutrino mass better than 0.03 eV
 - Constrain primordial non-Gaussianity amplitude $f_{\rm NL}$ with precision ~ 2

Euclid's science

- Euclid's main probes:
 - Spectroscopic galaxy clustering survey
 - Photometric weak lensing survey
- Euclid's ancillary probes:

 - Galaxy clusters (number counts and clustering)
 - Cross-correlation with cosmic microwave background
 - Hubble rate measurements with strong lensing

• Clustering of the photometric galaxy sample (in fact, " $3 \times 2 \, \text{pt}$ " as main probe)

EARLY COMMISSIONING TEST IMAGE, VIS INSTRUMENT

VISTA VMC J-band

2Mass J-band

Credit: Ross Collins, ESA/Euclid/Euclid Consortium

Euclid facts

Year1 Year2 Year3 Year4 Year5 Year6

2518"

EUCLID VIS

Credit: Yuzheng Kang

100"

1.18

162" 162" 162" 162" HST WFC3/UVIS

HST WFC3/IR

ROMAN WFI (planned 2027)

2990"

The SKA Project

50 MHz

SKA1 LOW - the SKA's low-frequency instrument

The Square Kilometre Array (SKA) will be the world's largest radio telescope, revolutionising our understanding of the Universe. The SKA will be built in two phases - SKA1 and SKA2 starting in 2018, with SKA1 representing a fraction of the full SKA. SKA1 will include two instruments - SKA1 MID and SKA1 LOW - observing the Universe at different frequencies

SKA1-mid – the SKA's mid-frequency instrument

he Square Kilometre Array (SKA) is a next-generation radio astronomy facility that olutionise our understanding of the Universe. It will have a uniquely distributed one observatory operating two telescopes on three continents. Construction f the SKA will be phased and work is currently focused on the first phase named SKA1, orresponding to a fraction of the full SKA. SKA1 will include two instruments – SKA1-mid nd SKA1-low – observing the Universe at different frequencies

SKAO Science

SKAO's Low telescope

SKAO's Mid telescope

Cosmology at radio wavelengths

- Surveys carried out at radio wavelengths:
 - HI-line galaxy surveys
 - Continuum galaxy surveys
 - Radio weak lensing surveys
 - HI intensity mapping surveys
- Multi-wavelength synergies

Towards the SKAO

Towards the SKAO

Precursors

Located at future SKA sites (South Africa and Australia)

Pathfinders

Engaged in SKA related technology and science studies

ASKAP

APERTIF

[Courtesy of A. Bonaldi]

• The LOFAR Two-metre Sky Survey (LoTSS)

- LoTSS-Deep DR1:
 - Boötes, Lockman & Elias N1 fields w/ ~80 µJy/beam rms
 - Multi-frequency coverage leading to ~8ok radio sources (~0.9/arcmin²)

• LoTSS DR2:

- Core and remote station HBA obs:
 @ 144 MHz, 841 pointings, 5600 sq. deg.
- Direction dependent calibration:
 6" resolution, ~80 µ Jy/beam rms
- 4.4M radio sources (~0.2/arcmin²)

- LOFAR cosmology publications:
- Redshift distribution
- Counts-in-cell
- Radio dipole

[Bhardwaj et al. ⊃ SC 2024]

[Pashamourahmadabadi et al. 2024 (TBS)]

[Böhme et al. 2023]

16000 8000 12000 Source Density per sq. deg

- Radio-radio correlation
- Radio-CMB correlation
- Radio-optical correlation
- Cosmological parameters

[Hale et al. ⊃ SC 2024]

[Nakoneczny et al. 2024]

[Zheng et al. \supset SC (in prep.)]

[Heneka et al. (in prep.)]

ASKAP

- The Rapid ASKAP Continuum Survey (RACS)
 - Deepest radio survey of the Southern sky to date (central frequency 887.5 MHz)
 - Large instantaneous field of view $\sim 31 \text{ deg}^2$ (~900 pointings with 15 min observations)
 - About 2.1M galaxies (cutting Galactic plane at $\pm 5^{\circ}$)

Publications of the Astronomical Society of Australia (2021), 38, e058, 25 pages doi:10.1017/pasa.2021.47

Research Paper

The Rapid ASKAP Continuum Survey Paper II: First Stokes I Source Catalogue Data Release

Catherine L. Hale^{1,2}, D. McConnell³, A. J. M. Thomson¹, E. Lenc³, G. H. Heald¹, A. W. Hotan¹, J. K. Leung^{3,4}, V. A. Moss³, T. Murphy⁴, J. Pritchard^{4,3}, E. M. Sadler^{3,4}, A. J. Stewart⁴ and M. T. Whiting³ ¹CSIRO Space and Astronomy, PO Box 1130, Bentley WA 6102, Australia,²School of Physics and Astronomy, University of Edinburgh, Institute for Astronomy, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK,³CSIRO Space and Astronomy, PO Box 76, Epping, NSW, 1710, Australia and ⁴Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia

CAMBRIDGE UNIVERSITY PRESS [Hale et al. 2021]

e-MERLIN

- The Super Cluster Assisted Shear Survey (SuperCLASS)
 - Paving the road to detecting cosmic shear in the radio band
 - 0.06 gal/arcmin² (detected, resolved, and at high redshift)
 - ~0.26 deg²

/Ionthly Notices OYAL ASTRONOMICAL SOCIET MNRAS 495, 1706–1723 (2020) Advance Access publication 2020 April 2

SuperCLASS – I. The super cluster assisted shear survey: Project overview and data release 1

Richard A. Battye,^{1*} Michael L. Brown,¹ Caitlin M. Casey,² Ian Harrison[®],^{1,3} Neal J. Jackson,¹ Ian Smail[®],⁴ Robert A. Watson,¹ Christopher A. Hales,^{5,6} Sinclaire M. Manning[®],² Chao-Ling Hung[®],² Christopher J. Riseley,^{7,8,9} Filipe B. Abdalla,¹⁰ Mark Birkinshaw,¹¹ Constantinos Demetroullas,^{1,12} Scott Chapman,¹³ Robert J. Beswick,¹ Tom W. B. Muxlow,¹ Anna Bonaldi^{,1,14} Stefano Camera[®],^{1,15,16} Tom Hillier,¹ Scott T. Kay[®],¹ Aaron Peters,¹ David B. Sanders,¹⁷ Daniel B. Thomas,¹ A. P. Thomson,¹ Ben Tunbridge,¹ and Lee Whittaker^{1,10} (SuperCLASS Collaboration)

[Battye, SC et al. (2020)]

doi:10.1093/mnras/staa709

MeerKAT

- The MeerKAT Large Area Synoptic Survey (MeerKLASS)
 - Aiming at HI intensity mapping and continuum cosmology (lots of commensality)
 - Focus of sky patches with multi-wavelength data for cross-correlations
 - L-band: 856-1711 MHz (z < 0.65) & UHF-band: 544-1087 MHz (0.3 < z < 1.6)

A Large Sky Survey with MeerKAT

Mário G. Santos^{*},^{1,2} Philip Bull,^{3,4} Stefano Camera,⁵ Song Chen,¹ José Fonseca,¹ Ian Heywood,⁶ Matt Hilton,⁷ Matt Jarvis,^{1,6} Gyula I. G. Józsa^{2,8,9}, Kenda Knowles,⁷ Lerothodi Leeuw,¹⁰ Roy Maartens,^{1,11} Eliab Malefahlo,¹ Kim McAlpine,¹ Kavilan Moodley,⁷ Prina Patel,^{1,2} Alkistis Pourtsidou,¹¹ Matthew Prescott,¹ Kristine Spekkens,¹² Russ Taylor,^{1,13} Amadeus Witzemann¹ and Imogen Whittam¹

3.	.5	
3.	.4	
3.	.3	c
3.	.2	Kelvi
3.	.1	
2	0	

20

2.9

MeerKAT

Synergies

- Synergies for systematics:
 - Most obvious case, to cross-validate results, remove foregrounds, ...
- Synergies for sources:
- Synergies in volume:
 - such a case in the simplest sense)

• In some cases the same sources must be matched—very much true in noncosmological science but also for providing e.g. redshifts for cosmological cases

• In some cases the main gain is in increased volume probed (IM+Euclid might be

Synergies dos and don'ts

- Public *Euclid* data + external public/non-public data
 - Joint analyses can in principle be done without an EC project—but EC members should not be competing with Euclid internal projects
- Non-public *Euclid* data + external public data
 - EC members can work on these in EC projects; if people external to the EC are to be involved, an MoU should be written (external collaborators can also be defined)
- Non-public *Euclid* + external non-public data
 - MoU is needed

Positive

- 1. Makes things clear and open
- 2. Allows for science to be done before data releases
- 3. Could be broader than just cosmology

Could potentially be negative

- **1.** A bit of effort to write
- 2. Two rule sets so could be less agile

3. Will allow non-SKA members in Euclid to join the joint projects

[Courtesy of J. Brinchmann]

Synergy ideas

- Synergies for systematics:
 - Radio-optical shear
 - Galaxy number counts X HI intensity mapping
- Synergies for sources:
 - Morphological analysis (for photo-z calibration, multi-tracer, ...)
 - Cross-identifications
- Synergies in volume:
 - Fundamental physics on extremely large scales!!

