
Advances of the profiling & optimization of the LSST Pipeline

Antoine BERNARD (LPSC, Grenoble, France),
Q. Le Boulc’h, J. Bregeon, D. Boutigny, F. Hernandez, D. Parello, G. Mainetti

Science Pipelines Team Meeting, Feb. 12th 2025

Antoine BERNARD Profiling & optimization 1 / 39



LSST Pipelines Optimization
Summary)

(Full previous presentation available here about profling and optimization works with notebooks &
more results.)

Context:
Key Motivations: Reducing resource use (CPU time, memory, storage) for finance, ecology,
performance.
Code Context: Open-source code developed primarily by the Rubin project (US), many different
computing nodes (USA / UK / France (CC-IN2P3))
Profiler: required for reliable metrics. Some requirements (Low overhead, native code compatibility,
interactive visualizations, ...)

Difficulties:
Operational Context: Many implementations decisions already made, cannot be disrupted / Different
sites may have differents architectures (e.g. AMD vs Intel CPU)
Mixed Language: Difficulty profiling Python/C++ together (Python’s memory management
complicates analysis).
Overhead: Profiling tools significantly slow runtime.

Next steps:
Set-up test case: Profile with realistic datasets.
Start optimization: Piff package or forcedPhotCoadd seems promising targets.

Antoine BERNARD Profiling & optimization 2 / 39

https://me.lsst.eu/abernard/2024-11-06_Science_Pipelines_Team_Meeting_Profiling_the_pipelines.pdf
https://github.com/bernarda78/drp_optimization/
https://me.lsst.eu/abernard/rubin-HSC-DRP2-at-frdf/pipetasks/pipetasks.html
https://github.com/rmjarvis/Piff


LSST Pipelines Optimization
Summary)

(Full previous presentation available here about profling and optimization works with notebooks &
more results.)

Context:
Key Motivations: Reducing resource use (CPU time, memory, storage) for finance, ecology,
performance.
Code Context: Open-source code developed primarily by the Rubin project (US), many different
computing nodes (USA / UK / France (CC-IN2P3))
Profiler: required for reliable metrics. Some requirements (Low overhead, native code compatibility,
interactive visualizations, ...)

Difficulties:
Operational Context: Many implementations decisions already made, cannot be disrupted / Different
sites may have differents architectures (e.g. AMD vs Intel CPU)
Mixed Language: Difficulty profiling Python/C++ together (Python’s memory management
complicates analysis).
Overhead: Profiling tools significantly slow runtime.

Next steps:
Set-up test case: Profile with realistic datasets.
Start optimization: Piff package or forcedPhotCoadd seems promising targets.

Antoine BERNARD Profiling & optimization 3 / 39

https://me.lsst.eu/abernard/2024-11-06_Science_Pipelines_Team_Meeting_Profiling_the_pipelines.pdf
https://github.com/bernarda78/drp_optimization/
https://me.lsst.eu/abernard/rubin-HSC-DRP2-at-frdf/pipetasks/pipetasks.html
https://github.com/rmjarvis/Piff


LSST Pipelines Optimization
Summary)

(Full previous presentation available here about profling and optimization works with notebooks &
more results.)

Context:
Key Motivations: Reducing resource use (CPU time, memory, storage) for finance, ecology,
performance.
Code Context: Open-source code developed primarily by the Rubin project (US), many different
computing nodes (USA / UK / France (CC-IN2P3))
Profiler: required for reliable metrics. Some requirements (Low overhead, native code compatibility,
interactive visualizations, ...)

Difficulties:
Operational Context: Many implementations decisions already made, cannot be disrupted / Different
sites may have differents architectures (e.g. AMD vs Intel CPU)
Mixed Language: Difficulty profiling Python/C++ together (Python’s memory management
complicates analysis).
Overhead: Profiling tools significantly slow runtime.

Next steps:
Set-up test case: Profile with realistic datasets.
Start optimization: Piff package or forcedPhotCoadd seems promising targets.

Antoine BERNARD Profiling & optimization 4 / 39

https://me.lsst.eu/abernard/2024-11-06_Science_Pipelines_Team_Meeting_Profiling_the_pipelines.pdf
https://github.com/bernarda78/drp_optimization/
https://me.lsst.eu/abernard/rubin-HSC-DRP2-at-frdf/pipetasks/pipetasks.html
https://github.com/rmjarvis/Piff


LSST Pipelines Optimization
Summary)

(Full previous presentation available here about profling and optimization works with notebooks &
more results.)

Context:
Key Motivations: Reducing resource use (CPU time, memory, storage) for finance, ecology,
performance.
Code Context: Open-source code developed primarily by the Rubin project (US), many different
computing nodes (USA / UK / France (CC-IN2P3))
Profiler: required for reliable metrics. Some requirements (Low overhead, native code compatibility,
interactive visualizations, ...)

Difficulties:
Operational Context: Many implementations decisions already made, cannot be disrupted / Different
sites may have differents architectures (e.g. AMD vs Intel CPU)
Mixed Language: Difficulty profiling Python/C++ together (Python’s memory management
complicates analysis).
Overhead: Profiling tools significantly slow runtime.

Next steps:
Set-up test case: Profile with realistic datasets.
Start optimization: Piff package or forcedPhotCoadd seems promising targets.

Antoine BERNARD Profiling & optimization 5 / 39

https://me.lsst.eu/abernard/2024-11-06_Science_Pipelines_Team_Meeting_Profiling_the_pipelines.pdf
https://github.com/bernarda78/drp_optimization/
https://me.lsst.eu/abernard/rubin-HSC-DRP2-at-frdf/pipetasks/pipetasks.html
https://github.com/rmjarvis/Piff


LSST Pipelines Optimization
Profiling Strategies

Broad-to-specific profiling to isolate bottlenecks.

Improvement shall be measured

Process is iterative and empirical

High-level

Low-level

Whole Pipeline
(w/ built-in metrics)

Single Task Profiling
(w/ profiler)

Function/Line (w/
instrumentation)

Measure

& iterate

Antoine BERNARD Profiling & optimization 6 / 39



High-level profiling - Whole pipeline

LSST pipelines has inbuilt metrics about every task, providing memory used and time elapsed (as
well as input identifiers)

already used to analyze ressource usage during DP0.2

re-used on a partial HSC PDR2 run, for test purpose

Antoine BERNARD Profiling & optimization 7 / 39



High-level profiling - Whole pipeline

LSST pipelines has inbuilt metrics about every task, providing memory used and time elapsed (as
well as input identifiers)

already used to analyze ressource usage during DP0.2

re-used on a partial HSC PDR2 run, for test purpose

Antoine BERNARD Profiling & optimization 8 / 39



High-level profiling - Whole pipeline

LSST pipelines has inbuilt metrics about every task, providing memory used and time elapsed (as
well as input identifiers)

already used to analyze ressource usage during DP0.2

re-used on a partial HSC PDR2 run, for test purpose

Antoine BERNARD Profiling & optimization 9 / 39



High-level profiling - Whole pipeline

Antoine BERNARD Profiling & optimization 10 / 39



High-level profiling - Whole pipeline

Antoine BERNARD Profiling & optimization 11 / 39



Profiling and optimizing forcedPhotCoadd

Using IntelVTune profiler,

Using stack version w 2024 47 with cvmfs,

Executing on ccahm002 interactive server,

Input: HSC-PDR2, exposure=6414, patch=0, band=’g’ (smallest and fastest input) approx.
500sec

Antoine BERNARD Profiling & optimization 12 / 39

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html


Profiling and optimizing forcedPhotCoadd

Using IntelVTune profiler,

Using stack version w 2024 47 with cvmfs,

Executing on ccahm002 interactive server,

Input: HSC-PDR2, exposure=6414, patch=0, band=’g’ (smallest and fastest input) approx.
500sec

Antoine BERNARD Profiling & optimization 13 / 39

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html


Profiling and optimizing forcedPhotCoadd

Using IntelVTune profiler,

Using stack version w 2024 47 with cvmfs,

Executing on ccahm002 interactive server,

Input: HSC-PDR2, exposure=6414, patch=0, band=’g’ (smallest and fastest input) approx.
500sec

Antoine BERNARD Profiling & optimization 14 / 39

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html


Profiling and optimizing forcedPhotCoadd

Using IntelVTune profiler,

Using stack version w 2024 47 with cvmfs,

Executing on ccahm002 interactive server,

Input: HSC-PDR2, exposure=6414, patch=0, band=’g’ (smallest and fastest input) approx.
500sec

Antoine BERNARD Profiling & optimization 15 / 39

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html


Profiling and optimizing forcedPhotCoadd

Using IntelVTune profiler,

Using stack version w 2024 47 with cvmfs,

Executing on ccahm002 interactive server,

Input: HSC-PDR2, exposure=6414, patch=0, band=’g’ (smallest and fastest input) approx.
500sec

Antoine BERNARD Profiling & optimization 16 / 39

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html


Profiling and optimizing forcedPhotCoadd

Using IntelVTune profiler,

Using stack version w 2024 47 with cvmfs,

Executing on ccahm002 interactive server,

Input: HSC-PDR2, exposure=6414, patch=0, band=’g’ (smallest and fastest input) approx.
500sec

Antoine BERNARD Profiling & optimization 17 / 39

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html


Profiling and optimizing forcedPhotCoadd

Using IntelVTune profiler,

Using stack version w 2024 47 with cvmfs,

Executing on ccahm002 interactive server,

Input: HSC-PDR2, exposure=6414, patch=0, band=’g’ (smallest and fastest input) approx.
500sec

Antoine BERNARD Profiling & optimization 18 / 39

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html


Code modification

Optimize:
tracked one consuming call stacks: sincosf64x and sqrt function used in
boost::math::detail::bessel j1,
in meas base package, in src/SincCoeffs.cc, modified calcImageKSpaceCplx (see on Github),

Idea in this:
Refactor code for simplification and enable auto-vectorization
Remove unecessary nested-loops

Expected results:
More memory usage because pre-computation
Less runtime thanks to vectorization
Biggest chunk of time unaffected yet, cause Bessel function not vectorizable.

Antoine BERNARD Profiling & optimization 19 / 39

https://github.com/lsst/meas_base/blob/main/src/SincCoeffs.cc#L344


Code modification

Optimize:
tracked one consuming call stacks: sincosf64x and sqrt function used in
boost::math::detail::bessel j1,
in meas base package, in src/SincCoeffs.cc, modified calcImageKSpaceCplx (see on Github),

Idea in this:
Refactor code for simplification and enable auto-vectorization
Remove unecessary nested-loops

Expected results:
More memory usage because pre-computation
Less runtime thanks to vectorization
Biggest chunk of time unaffected yet, cause Bessel function not vectorizable.

Antoine BERNARD Profiling & optimization 20 / 39

https://github.com/lsst/meas_base/blob/main/src/SincCoeffs.cc#L344


Code modification

Optimize:
tracked one consuming call stacks: sincosf64x and sqrt function used in
boost::math::detail::bessel j1,
in meas base package, in src/SincCoeffs.cc, modified calcImageKSpaceCplx (see on Github),

Idea in this:
Refactor code for simplification and enable auto-vectorization
Remove unecessary nested-loops

Expected results:
More memory usage because pre-computation
Less runtime thanks to vectorization
Biggest chunk of time unaffected yet, cause Bessel function not vectorizable.

Antoine BERNARD Profiling & optimization 21 / 39

https://github.com/lsst/meas_base/blob/main/src/SincCoeffs.cc#L344


Code modification

Optimize:
tracked one consuming call stacks: sincosf64x and sqrt function used in
boost::math::detail::bessel j1,
in meas base package, in src/SincCoeffs.cc, modified calcImageKSpaceCplx (see on Github),

Idea in this:
Refactor code for simplification and enable auto-vectorization
Remove unecessary nested-loops

Expected results:
More memory usage because pre-computation
Less runtime thanks to vectorization
Biggest chunk of time unaffected yet, cause Bessel function not vectorizable.

Antoine BERNARD Profiling & optimization 22 / 39

https://github.com/lsst/meas_base/blob/main/src/SincCoeffs.cc#L344


Optimization results
Primary results

Antoine BERNARD Profiling & optimization 23 / 39



Optimization results
Primary results

Antoine BERNARD Profiling & optimization 24 / 39



Optimization results
Primary results

Antoine BERNARD Profiling & optimization 25 / 39



Optimization results
Global results

Antoine BERNARD Profiling & optimization 26 / 39



Optimization results
Global results

Colors correponds to band,

Every job runtime decreased,

Approx 3/4 of the job memory
increased,

Antoine BERNARD Profiling & optimization 27 / 39



Optimization results
Global results

∑
ti (h)

∑
mi (Gb)

∑
(ti ·mi ) (Gb.h)

Whole Pipeline
Base 1617.1 157045.7 4013.7
Opti 1410.5 157213.1 3367.1
Diff 206.6 -167.4 646.6
Relative (%) -12.8% 0.1% -16.1%

forcedPhotCoadd Task
Base 450.5 1282.5 1525.5
Opti 243.9 1449.9 878.9
Diff 206.6 -167.4 646.6
Relative (%) -45.9% 13.0% -42.4%

Antoine BERNARD Profiling & optimization 28 / 39



Optimization results
Summary

Primary results: 100s gain on a 700s run, seems great & code is more vectorized !

Global results: -45.9% runtime for forcedPhotCoadd & -12.8% for the whole pipeline... for
approx. 20 lines of codes

Something is wrong !

Way too much performance gain ! That’s suspicious !

What could have gone wrong ?

Code improved between v27 and w 2024 47 ?

Difference between interactive server and bacth-server ?

Huge variability in runtime inherent to the processing ?

Antoine BERNARD Profiling & optimization 29 / 39



Optimization results
Summary

Primary results: 100s gain on a 700s run, seems great & code is more vectorized !

Global results: -45.9% runtime for forcedPhotCoadd & -12.8% for the whole pipeline... for
approx. 20 lines of codes

Something is wrong !

Way too much performance gain ! That’s suspicious !

What could have gone wrong ?

Code improved between v27 and w 2024 47 ?

Difference between interactive server and bacth-server ?

Huge variability in runtime inherent to the processing ?

Antoine BERNARD Profiling & optimization 30 / 39



Optimization results
Summary

Primary results: 100s gain on a 700s run, seems great & code is more vectorized !

Global results: -45.9% runtime for forcedPhotCoadd & -12.8% for the whole pipeline... for
approx. 20 lines of codes

Something is wrong !

Way too much performance gain ! That’s suspicious !

What could have gone wrong ?

Code improved between v27 and w 2024 47 ?

Difference between interactive server and bacth-server ?

Huge variability in runtime inherent to the processing ?

Antoine BERNARD Profiling & optimization 31 / 39



Machine impact
Interactive vs batch, & multiple stacks version

w 2024 47/meas base modified noopt: Using w 2024 47 of the stack, with package meas base

modified with base compilation option, run with sbatch.

w 2024 47/meas base: Using w 2024 47 of the stack, with package meas base with base
compilation option, run with sbatch.

w 2024 47/stack: Using w 2024 47 version of the stack, run with sbatch.

v27.0.0/stack: Using v27.0.0 version of the stack (dated approx. June 2024), run with sbatch.

ccahm002/w 2024 47/meas base modified noopt: Using w 2024 47 of the stack, with package
meas base modified with base compilation option, run on ccahm002 interactive server.

ccahm002/w 2024 47/stack: Using the w 2024 47 version of the stack, run on ccahm002

interactive server.

quentin full run v27?: Results obtained from HSC-PDR2 run made by Quentin in early
September 2024, using version v27.0.0. No info on the run’s specifics.

Antoine BERNARD Profiling & optimization 32 / 39



Machine impact
Interactive vs batch, & multiple stacks version

Patch 0

Antoine BERNARD Profiling & optimization 33 / 39



Machine impact
Interactive vs batch, & multiple stacks version

Patch 40

Antoine BERNARD Profiling & optimization 34 / 39



Machine impact
Multiple run using slurm

Using all CC-IN2P3 node:

Some memory threshold

Runtime variability does not seems
correlated to a particular server

Notebooks here & more results here. Antoine BERNARD Profiling & optimization 35 / 39

https://github.com/bernarda78/drp_optimization/
https://me.lsst.eu/abernard/comparaison_interactive-vs-batch-run/pipetasks/main.html


Machine impact
Multiple run using slurm

Using 2 reserved nodes, 1 job at a time:

Notebooks here & more results here.
Antoine BERNARD Profiling & optimization 36 / 39

https://me.lsst.eu/abernard/task_performance_variability/pipetasks/html/memory-vs-runtime-forcedPhotCoadd-patch=0-band=g-single_task_jobs_parallel.png
https://github.com/bernarda78/drp_optimization/
https://me.lsst.eu/abernard/comparaison_interactive-vs-batch-run/pipetasks/main.html


Machine impact
Multiple run using slurm

Using 2 reserved nodes:

Difference between two nodes match
nodes specs !

Runtime bump even at 2 jobs in parallel
seems to be slurm putting multiple
thread on the same physical core,

Hyperthreading ?

Time per job in increase,

Notebooks here & more results here.

Antoine BERNARD Profiling & optimization 37 / 39

https://me.lsst.eu/abernard/task_performance_variability/pipetasks/html/memory-vs-runtime-forcedPhotCoadd-patch=0-band=g-statistics.html
https://github.com/bernarda78/drp_optimization/
https://me.lsst.eu/abernard/comparaison_interactive-vs-batch-run/pipetasks/main.html


Summary

Need to control the environnement to properly measure performance gain ...

... but we need to ensure our gains translate into a production environnement !

or

We could just run 1̃00 of runs to get a distribution and statistics each improvement,

Coud work for short runtime tasks ...

Strategy:

Dedicate a machine to pursue testing on, simple fast case

Test again with inputs thats take longer to process,

Once improvements observed, tests how it scale on a loaded machine,

Antoine BERNARD Profiling & optimization 38 / 39



Summary

Need to control the environnement to properly measure performance gain ...

... but we need to ensure our gains translate into a production environnement !

or

We could just run 1̃00 of runs to get a distribution and statistics each improvement,

Coud work for short runtime tasks ...

Strategy:

Dedicate a machine to pursue testing on, simple fast case

Test again with inputs thats take longer to process,

Once improvements observed, tests how it scale on a loaded machine,

Antoine BERNARD Profiling & optimization 39 / 39


