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LSST Pipelines Optimization
Summary)

(Full previous presentation available here about profling and optimization works with notebooks &
more results.)

Context:
Key Motivations: Reducing resource use (CPU time, memory, storage) for finance, ecology,
performance.
Code Context: Open-source code developed primarily by the Rubin project (US), many different
computing nodes (USA / UK / France (CC-IN2P3))
Profiler: required for reliable metrics. Some requirements (Low overhead, native code compatibility,
interactive visualizations, ...)

Difficulties:
Operational Context: Many implementations decisions already made, cannot be disrupted / Different
sites may have differents architectures (e.g. AMD vs Intel CPU)
Mixed Language: Difficulty profiling Python/C++ together (Python’s memory management
complicates analysis).
Overhead: Profiling tools significantly slow runtime.

Next steps:
Set-up test case: Profile with realistic datasets.
Start optimization: Piff package or forcedPhotCoadd seems promising targets.
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LSST Pipelines Optimization
Profiling Strategies

Broad-to-specific profiling to isolate bottlenecks.

Improvement shall be measured

Process is iterative and empirical

High-level

Low-level

Whole Pipeline
(w/ built-in metrics)

Single Task Profiling
(w/ profiler)

Function/Line (w/
instrumentation)

Measure

& iterate
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High-level profiling - Whole pipeline

LSST pipelines has inbuilt metrics about every task, providing memory used and time elapsed (as
well as input identifiers)

already used to analyze ressource usage during DP0.2

re-used on a partial HSC PDR2 run, for test purpose
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Profiling and optimizing forcedPhotCoadd

Using IntelVTune profiler,

Using stack version w 2024 47 with cvmfs,

Executing on ccahm002 interactive server,

Input: HSC-PDR2, exposure=6414, patch=0, band=’g’ (smallest and fastest input) approx.
500sec
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Code modification

Optimize:
tracked one consuming call stacks: sincosf64x and sqrt function used in
boost::math::detail::bessel j1,
in meas base package, in src/SincCoeffs.cc, modified calcImageKSpaceCplx (see on Github),

Idea in this:
Refactor code for simplification and enable auto-vectorization
Remove unecessary nested-loops

Expected results:
More memory usage because pre-computation
Less runtime thanks to vectorization
Biggest chunk of time unaffected yet, cause Bessel function not vectorizable.
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Optimization results
Primary results
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Optimization results
Global results
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Optimization results
Global results

Colors correponds to band,

Every job runtime decreased,

Approx 3/4 of the job memory
increased,
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Optimization results
Global results

∑
ti (h)

∑
mi (Gb)

∑
(ti ·mi ) (Gb.h)

Whole Pipeline
Base 1617.1 157045.7 4013.7
Opti 1410.5 157213.1 3367.1
Diff 206.6 -167.4 646.6
Relative (%) -12.8% 0.1% -16.1%

forcedPhotCoadd Task
Base 450.5 1282.5 1525.5
Opti 243.9 1449.9 878.9
Diff 206.6 -167.4 646.6
Relative (%) -45.9% 13.0% -42.4%

Antoine BERNARD Profiling & optimization 28 / 39



Optimization results
Summary

Primary results: 100s gain on a 700s run, seems great & code is more vectorized !

Global results: -45.9% runtime for forcedPhotCoadd & -12.8% for the whole pipeline... for
approx. 20 lines of codes

Something is wrong !

Way too much performance gain ! That’s suspicious !

What could have gone wrong ?

Code improved between v27 and w 2024 47 ?

Difference between interactive server and bacth-server ?

Huge variability in runtime inherent to the processing ?

Antoine BERNARD Profiling & optimization 29 / 39



Optimization results
Summary

Primary results: 100s gain on a 700s run, seems great & code is more vectorized !

Global results: -45.9% runtime for forcedPhotCoadd & -12.8% for the whole pipeline... for
approx. 20 lines of codes

Something is wrong !

Way too much performance gain ! That’s suspicious !

What could have gone wrong ?

Code improved between v27 and w 2024 47 ?

Difference between interactive server and bacth-server ?

Huge variability in runtime inherent to the processing ?

Antoine BERNARD Profiling & optimization 30 / 39



Optimization results
Summary

Primary results: 100s gain on a 700s run, seems great & code is more vectorized !

Global results: -45.9% runtime for forcedPhotCoadd & -12.8% for the whole pipeline... for
approx. 20 lines of codes

Something is wrong !

Way too much performance gain ! That’s suspicious !

What could have gone wrong ?

Code improved between v27 and w 2024 47 ?

Difference between interactive server and bacth-server ?

Huge variability in runtime inherent to the processing ?

Antoine BERNARD Profiling & optimization 31 / 39



Machine impact
Interactive vs batch, & multiple stacks version

w 2024 47/meas base modified noopt: Using w 2024 47 of the stack, with package meas base

modified with base compilation option, run with sbatch.

w 2024 47/meas base: Using w 2024 47 of the stack, with package meas base with base
compilation option, run with sbatch.

w 2024 47/stack: Using w 2024 47 version of the stack, run with sbatch.

v27.0.0/stack: Using v27.0.0 version of the stack (dated approx. June 2024), run with sbatch.

ccahm002/w 2024 47/meas base modified noopt: Using w 2024 47 of the stack, with package
meas base modified with base compilation option, run on ccahm002 interactive server.

ccahm002/w 2024 47/stack: Using the w 2024 47 version of the stack, run on ccahm002

interactive server.

quentin full run v27?: Results obtained from HSC-PDR2 run made by Quentin in early
September 2024, using version v27.0.0. No info on the run’s specifics.
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Machine impact
Interactive vs batch, & multiple stacks version

Patch 0
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Machine impact
Interactive vs batch, & multiple stacks version

Patch 40
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Machine impact
Multiple run using slurm

Using all CC-IN2P3 node:

Some memory threshold

Runtime variability does not seems
correlated to a particular server

Notebooks here & more results here. Antoine BERNARD Profiling & optimization 35 / 39
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Machine impact
Multiple run using slurm

Using 2 reserved nodes, 1 job at a time:

Notebooks here & more results here.
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Machine impact
Multiple run using slurm

Using 2 reserved nodes:

Difference between two nodes match
nodes specs !

Runtime bump even at 2 jobs in parallel
seems to be slurm putting multiple
thread on the same physical core,

Hyperthreading ?

Time per job in increase,

Notebooks here & more results here.
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Summary

Need to control the environnement to properly measure performance gain ...

... but we need to ensure our gains translate into a production environnement !

or

We could just run 1̃00 of runs to get a distribution and statistics each improvement,

Coud work for short runtime tasks ...

Strategy:

Dedicate a machine to pursue testing on, simple fast case

Test again with inputs thats take longer to process,

Once improvements observed, tests how it scale on a loaded machine,
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