

Numerical computing in Rust
Hadrien Grasland 2024-11-25

 2 / 32

My ideal compute language?

 3 / 32

General-purpose

~

 4 / 32

Easy to optimize

~

~

 5 / 32

Well-equipped for larger projects*

* When we start appreciating encapsulation, generics, polymorphism, code generation, a hierarchized API…

 6 / 32

Not that much of a choice!

 7 / 32

Many common ideas

● (Normally) AoT compiled
● No mandatory GC
● Strict/explicit typing
● Low-level control
● Metaprogramming
● Rich & zero-cost abstractions
● Price to pay: takes a while to master

● So, what does Rust do differently?

 8 / 32

Undefined behavior (UB) in C++

● The optimizer assumes there is none → Unpredictable effect

● Arithmetics: Signed int overflow, shift > bits, -INT_MIN, casts…
● Arrays: Out of bounds accesses, iterator invalidation…
● Pointers/references: Null, misaligned, invalid, strict aliasing…
● Uninitialized memory: Merely reading its value is UB

(beware destructors, assignment, exceptions…)
● Infinite loops may violate Fermat’s last theorem
● Multi-threading: Concurent access to data being written

● Many more Unavoidable in real-world code…→

https://www.youtube.com/watch?v=g7entxbQOCc&t=2404s&pp=ygUbdW5kZWZpbmVkIGJlaGF2aW9yIGlzIG1hZ2lj
https://coliru.stacked-crooked.com/view?id=dd1fcce64a16e853
https://stackoverflow.com/a/367662

 9 / 32

Consequence: Security problems*

● Share of memory safety vulnerabilities in C/++ projects:
– 65% in Android (90% of media & bluetooth vulns)
– 65% in the Linux kernel (according to Ubuntu)
– 66% in iOS, 72% in macOS
– 70% in Google Chrome
– 70% in Microsoft products
– 74% in Firefox's CSS engine

● …and that’s just one kind of undefined behavior!

* For sure, your compute code may not be exposed to attackers today.
But are you 100% sure no one will ever try to build a web visualization on top of it?

https://android-developers.googleblog.com/2020/02/detecting-memory-corruption-bugs-with-hwasan.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://twitter.com/geofft/status/1132739184060489729
https://langui.sh/2019/07/23/apple-memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/

 10 / 32

Rust’s answer: A safety pledge
● Outside of unsafe blocks*, Rust compiler proves UB-safety:

– Type: Values will honor type invariants (e.g. str is UTF-8)
– Memory: References will point to valid, initialized memory
– Thread: Writes to shared data will be synchronized

● A good tradeoff in practice
– Need unsafe: compile-time proof may be impossible,

frequent run-time checks may become expensive
– BUT can do most work without it
– Used rarely & localized Easier to audit than C/++→

* Unsafe code benefits from the normal proofs, but can also use un-proven primitives.

 11 / 32

C++ type system weaknesses

● Unexpected behavior and incomprehensible errors
often caused by interactions between…
– Implicit conversions (inc. non-explicit constructors)
– Function overloading + default arguments
– Templates + spécializations thereof
– Virtual methods + inheritance

● Templates extra hard to write due to minimal type checking*
– Instantiation errors feel much like Python/JS runtime errors

* I know about C++20 concepts, you’ll see how they fail to solve the problem in a few slides.

 12 / 32

A simple C++ program

Imagine that’s from a third-party library

 13 / 32

Helpful compiler output

 14 / 32

Find the problem

 15 / 32

Find all the problems

Illegal in C++
(no alternative)

UB if input.size() == 0

float double float round trip if T is float→ →

Dubious result if there is a NaN in « input »
(UB likely with less careful third party sort)

C++20 concepts don’t reliably prevent instantiation errors
 (only work if manually kept in sync with implementation)

 16 / 32

Find all the problems

Illegal in C++
(no alternative)

UB if input.size() == 0

float double float round trip if T is float→ →

Dubious result if there is a NaN in « input »
(UB likely with less careful third party sort)

C++20 concepts don’t reliably prevent instantiation errors
 (only work if manually kept in sync with implementation)

I’ve been writing C++ for ~20 years

The first code I write remains full of these « little gotchas »

Only a tiny fraction is detected by usual compiler lints (-Wall -Wextra)

It takes hours of proofreading, testing… to get to a correct result for all inputs

 17 / 32

Rust’s answer: Stronger typing

● All Rust polymorphism comes from constrained generics:
– Types can implement traits, e.g. operator overloads
– Generic code must tell what traits it needs in its API
– Using ~anything else causes a clear compiler error*

● Consequence: Rust is a lot more predictable
– No conversion/overloading/template/virtual/… interactions
– Generics fail early and clearly, neither at instantiation time

nor deep inside of the implementation

* This is the check that C++20 concepts lack, likely for backcompat with old templates.
Thus any change to generic C++ code may silently invalidate its concept API contract…

 18 / 32

Let’s translate my code to Rust

 19 / 32

Compiler reports 3 errors

 20 / 32

Error 1: Can’t display Vec<T>

● Problem found even if generic code not instantiated
● Suggests an alternative: the Debug output

 21 / 32

Error 2: Can’t sort floats

● Not allowed to sort floats by default: NaN is not ordered
– Can assert absence of NaNs in various ways

 22 / 32

Error 3: Can’t divide by a literal

● Float literals untyped, no implicit conversion to arbitrary T
● End of the error message points to more detailed explanations

 23 / 32

One error remains undetected*

● Rust version still wrong if input Vec is empty
● This will cause a deterministic crash (panic) at runtime

– No undefined behavior, unlike in C++

● Is this a good error handling strategy?
– Yes if an empty input is considered to be a user error

● …but then it should be spelled out in documentation!
– Otherwise, should return Option<T>: Some(T) or None

* Alas, Rust will not save you from writing tests. It will only prevent many test failures.

 24 / 32

C++ error reporting

● Historically bet everything on exceptions
– Very expensive to throw and catch
– Hard to write code that’s correct when it happens
– Discouraged in destructors, but no alternative provided

● Don’t want exceptions? Welcome to the jungle.
– Special return values or « int » that no one checks, as in C
– Exotic return types specific to each individual project
– Error case documentation usually incomplete

 25 / 32

Rust’s answer: A clear strategy

● For recoverable errors, use enumerated type* Result<T, E>
– Contains either valid output Ok(T) or error description Err(E)
– To get to the output, must specify how errors are handled

● For program bugs (e.g. failed assertions), use panics
– Configurable: unwind (like C++ exceptions) or abort
– Catching unwinding panics is allowed, but rare/discouraged

● Strong community consensus + error documentation culture

* Similar to C++17’s std::variant, but with an API that normal people would want to use.

 26 / 32

Code generation

● In C++, often done via template metaprogramming
– Error checking bug (SFINAE) that became a key C++ feature
– Leveraged through unmaintainable expert-only code
– Very inefficient Build becomes slow, RAM-hungry→

– Alternatives? Preprocessor macros, parse compiler’s debug
outputs, add a code generator like ROOT to the build…

● In Rust: Traits/generics, build scripts, or lexical macros
– Operates on AST-like token tree provided by the compiler
– Much better ergonomics/expressivity tradeoff

 27 / 32

Example: serde

● Macro-based generation of ~universal (de)serialization code

Doesn’t need to be in std

Enables JSON, CSV, Pickle… (de)serialization

Language-provided macro for debug output

 28 / 32

Build and dependencies

● In C/++, you get CMake and the Linux distribution zoo
– If you don’t hate these yet, you’ve not faced them enough
– Outcome: Code reuse aversion → Wheel reinvention

● Rust’s answer: cargo included in standard toolchain*
– Dual purpose: build system + package manager
– Easy for small projects, scales well to much larger ones
– Dependencies are now easy → Lively libs ecosystem

* Which also features a bunch of other basic tools: doc generator, unit test harness…

 29 / 32

C++ is drowning in its past

● Practicioners (even young) rarely trained on new revisions
● Compilers don’t keep up. Especially on RHEL, embedded…
● Ghosts from C/++ past keep influencing C++ future

– Preprocessor, copy-and-paste macros, includes*
– Ill-defined primitive types like long (size?) and char (sign?)
– Typed literals 42ULL and 1.2f insanity→

– Wrong defaults: switch fallthrough, copy semantics, const
– Implicit conversions, vector<bool>, numeric_limits::min…

* C++20 modules tried to fix it… with a design so flawed that module mapper madness ensued.
Even without that, not all headers will be rewritten people must know/deal with both forever.→

https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Module-Mapper.html

 30 / 32

Rust’s answer: Define C++’s future

● C++17 as seen from Rust v1 (2015)
– Trying hard to catch up…

filesystem, any, string_view, byte, aligned_alloc
– …but some copies are pretty defective

optional, std::tuple, structured bindings, CTAD, std::variant

● C++20 on a similar trajectory
– More decent copies: <=>, consteval, { .a }, format, span,

endian, <bit>, barrier, latch, jthread, assume_aligned
– More failed copies: Ranges, coroutines, modules, concepts

 31 / 32

Conclusion

● 2 good reasons to start a C++ projet in 2024
– Part of a larger C++ project that you should not rewrite
– C++ libraries and tools more mature for your problem

● In any other situation, consider Rust instead
– Language now mature enough, rarely the limiting factor
– Superior ergonomics Less bugs, more features→

– Easier to learn + better overall support than C++2x

Thanks for your attention !

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32

