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My ideal compute language?
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General-purpose

~
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Easy to optimize

~

~
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Well-equipped for larger projects*

* When we start appreciating encapsulation, generics, polymorphism, code generation, a hierarchized API…
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Not that much of a choice!
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Many common ideas

● (Normally) AoT compiled
● No mandatory GC
● Strict/explicit typing
● Low-level control
● Metaprogramming
● Rich & zero-cost abstractions
● Price to pay: takes a while to master

● So, what does Rust do differently?
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Undefined behavior (UB) in C++

● The optimizer assumes there is none  → Unpredictable effect

● Arithmetics: Signed int overflow, shift > bits, -INT_MIN, casts…
● Arrays: Out of bounds accesses, iterator invalidation…
● Pointers/references: Null, misaligned, invalid, strict aliasing…
● Uninitialized memory: Merely reading its value is UB

(beware destructors, assignment, exceptions…)
● Infinite loops may violate Fermat’s last theorem
● Multi-threading: Concurent access to data being written

● Many more  Unavoidable in real-world code…→

https://www.youtube.com/watch?v=g7entxbQOCc&t=2404s&pp=ygUbdW5kZWZpbmVkIGJlaGF2aW9yIGlzIG1hZ2lj
https://coliru.stacked-crooked.com/view?id=dd1fcce64a16e853
https://stackoverflow.com/a/367662
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Consequence: Security problems*

● Share of memory safety vulnerabilities in C/++ projects:
– 65% in Android (90% of media & bluetooth vulns)
– 65% in the Linux kernel (according to Ubuntu)
– 66% in iOS, 72% in macOS
– 70% in Google Chrome
– 70% in Microsoft products
– 74% in Firefox's CSS engine

● …and that’s just one kind of undefined behavior!

* For sure, your compute code may not be exposed to attackers today.
But are you 100% sure no one will ever try to build a web visualization on top of it?

https://android-developers.googleblog.com/2020/02/detecting-memory-corruption-bugs-with-hwasan.html
https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://twitter.com/geofft/status/1132739184060489729
https://langui.sh/2019/07/23/apple-memory-safety/
https://www.chromium.org/Home/chromium-security/memory-safety
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://hacks.mozilla.org/2019/02/rewriting-a-browser-component-in-rust/
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Rust’s answer: A safety pledge
● Outside of unsafe blocks*, Rust compiler proves UB-safety:

– Type: Values will honor type invariants (e.g. str is UTF-8)
– Memory: References will point to valid, initialized memory
– Thread: Writes to shared data will be synchronized

● A good tradeoff in practice
– Need unsafe: compile-time proof may be impossible,

frequent run-time checks may become expensive
– BUT can do most work without it
– Used rarely & localized  Easier to audit than C/++→

* Unsafe code benefits from the normal proofs, but can also use un-proven primitives.
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C++ type system weaknesses

● Unexpected behavior and incomprehensible errors
often caused by interactions between…
– Implicit conversions (inc. non-explicit constructors)
– Function overloading + default arguments
– Templates + spécializations thereof
– Virtual methods + inheritance

● Templates extra hard to write due to minimal type checking*
– Instantiation errors feel much like Python/JS runtime errors

* I know about C++20 concepts, you’ll see how they fail to solve the problem in a few slides.
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A simple C++ program

Imagine that’s from a third-party library
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Helpful compiler output
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Find the problem
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Find all the problems

Illegal in C++
(no alternative)

UB if input.size() == 0

float  double  float round trip if T is float→ →

Dubious result if there is a NaN in « input »
(UB likely with less careful third party sort)

C++20 concepts don’t reliably prevent instantiation errors
    (only work if manually kept in sync with implementation)



  16 / 32

Find all the problems

Illegal in C++
(no alternative)

UB if input.size() == 0

float  double  float round trip if T is float→ →

Dubious result if there is a NaN in « input »
(UB likely with less careful third party sort)

C++20 concepts don’t reliably prevent instantiation errors
    (only work if manually kept in sync with implementation)

I’ve been writing C++ for ~20 years

The first code I write remains full of these « little gotchas »

Only a tiny fraction is detected by usual compiler lints (-Wall -Wextra)

It takes hours of proofreading, testing… to get to a correct result for all inputs
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Rust’s answer: Stronger typing

● All Rust polymorphism comes from constrained generics:
– Types can implement traits, e.g. operator overloads
– Generic code must tell what traits it needs in its API
– Using ~anything else causes a clear compiler error*

● Consequence: Rust is a lot more predictable
– No conversion/overloading/template/virtual/… interactions
– Generics fail early and clearly, neither at instantiation time 

nor deep inside of the implementation

* This is the check that C++20 concepts lack, likely for backcompat with old templates.
Thus any change to generic C++ code may silently invalidate its concept API contract…
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Let’s translate my code to Rust
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Compiler reports 3 errors
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Error 1: Can’t display Vec<T>

● Problem found even if generic code not instantiated
● Suggests an alternative: the Debug output
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Error 2: Can’t sort floats

● Not allowed to sort floats by default: NaN is not ordered
– Can assert absence of NaNs in various ways
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Error 3: Can’t divide by a literal

● Float literals untyped, no implicit conversion to arbitrary T
● End of the error message points to more detailed explanations
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One error remains undetected*

● Rust version still wrong if input Vec is empty
● This will cause a deterministic crash (panic) at runtime

– No undefined behavior, unlike in C++

● Is this a good error handling strategy?
– Yes if an empty input is considered to be a user error

● …but then it should be spelled out in documentation!
– Otherwise, should return Option<T>: Some(T) or None

* Alas, Rust will not save you from writing tests. It will only prevent many test failures.
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C++ error reporting

● Historically bet everything on exceptions
– Very expensive to throw and catch
– Hard to write code that’s correct when it happens
– Discouraged in destructors, but no alternative provided

● Don’t want exceptions? Welcome to the jungle.
– Special return values or « int » that no one checks, as in C
– Exotic return types specific to each individual project
– Error case documentation usually incomplete
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Rust’s answer: A clear strategy

● For recoverable errors, use enumerated type* Result<T, E>
– Contains either valid output Ok(T) or error description Err(E)
– To get to the output, must specify how errors are handled

● For program bugs (e.g. failed assertions), use panics
– Configurable: unwind (like C++ exceptions) or abort
– Catching unwinding panics is allowed, but rare/discouraged

● Strong community consensus + error documentation culture

* Similar to C++17’s std::variant, but with an API that normal people would want to use.
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Code generation

● In C++, often done via template metaprogramming
– Error checking bug (SFINAE) that became a key C++ feature
– Leveraged through unmaintainable expert-only code
– Very inefficient  Build becomes slow, RAM-hungry→

– Alternatives? Preprocessor macros, parse compiler’s debug 
outputs, add a code generator like ROOT to the build…

● In Rust: Traits/generics, build scripts, or lexical macros
– Operates on AST-like token tree provided by the compiler
– Much better ergonomics/expressivity tradeoff
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Example: serde

● Macro-based generation of ~universal (de)serialization code

Doesn’t need to be in std

Enables JSON, CSV, Pickle… (de)serialization

Language-provided macro for debug output
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Build and dependencies

● In C/++, you get CMake and the Linux distribution zoo
– If you don’t hate these yet, you’ve not faced them enough
– Outcome: Code reuse aversion  → Wheel reinvention

● Rust’s answer: cargo included in standard toolchain*
– Dual purpose: build system + package manager
– Easy for small projects, scales well to much larger ones
– Dependencies are now easy  → Lively libs ecosystem

* Which also features a bunch of other basic tools: doc generator, unit test harness…
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C++ is drowning in its past

● Practicioners (even young) rarely trained on new revisions
● Compilers don’t keep up. Especially on RHEL, embedded…
● Ghosts from C/++ past keep influencing C++ future

– Preprocessor, copy-and-paste macros, includes*
– Ill-defined primitive types like long (size?) and char (sign?)
– Typed literals  42ULL and 1.2f insanity→

– Wrong defaults: switch fallthrough, copy semantics, const
– Implicit conversions, vector<bool>, numeric_limits::min…

* C++20 modules tried to fix it… with a design so flawed that module mapper madness ensued.
Even without that, not all headers will be rewritten  people must know/deal with both forever.→

https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Module-Mapper.html
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Rust’s answer: Define C++’s future

● C++17 as seen from Rust v1 (2015)
– Trying hard to catch up…

filesystem, any, string_view, byte, aligned_alloc
– …but some copies are pretty defective

optional, std::tuple, structured bindings, CTAD, std::variant

● C++20 on a similar trajectory
– More decent copies: <=>, consteval, { .a }, format, span, 

endian, <bit>, barrier, latch, jthread, assume_aligned
– More failed copies: Ranges, coroutines, modules, concepts
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Conclusion

● 2 good reasons to start a C++ projet in 2024
– Part of a larger C++ project that you should not rewrite
– C++ libraries and tools more mature for your problem

● In any other situation, consider Rust instead
– Language now mature enough, rarely the limiting factor
– Superior ergonomics  Less bugs, more features→

– Easier to learn + better overall support than C++2x



Thanks for your attention !
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