TULIP for neutron-deficient radioactive ions at SPIRAL1

P. Jardin & the Target Ion Source Group

10-13 of March, 2025

TULIP (Target Ion Source for Short-Lived Isotope Production)

Would it be possible to efficiently produce neutron-deficient short-lived isotopes at SPIRAL1?

- Step 1: proof of principle with Rb+ ions
- Step 2: production of metallic ions around 100Sn

TULIP for alkali

DLC window Mo-Ni-Mo target TULIP cavity (fusion-evaporation) Graphite catcher Primary beam Radioactive ion beam

On-line test : production of ⁷⁴⁻⁷⁸**Rb**⁺ **ions**

		ID station rate (pps)				
Rb Mass	T _{1/2}	March 22 ²² Ne+ ^{nat} Ni	July 23 ²⁰ Ne+ ^{nat} Ni			
74	64,76 ms		1,7E+01			
75	19 s		1,5E+04			
76	36,8 s	3,80E+03	2,5E+04			
77	3,78 m		1,6E+05			
78	5,74m/ 17,7 m	5,80E+04	6,8E+04			

Workshop on R&D for new ISOL beams (SPIRAL 1 and ALTO)

Next on-line production test : September 2025. Focussed on the production of ⁷⁴Rb⁺ ions

 An important gain (5000) is expected using a primary beam energy allowing to maximize the ⁷⁴Rb production XS

TULIP for alkali

- ~10⁴ pps of ⁷⁴Rb⁺ are expected on the identification station, assuming the same atom-to-ion transformation efficiencies as the one observed in 2023
- An additional gain (factor 5 to 10) seems to be realistic by increasing the TISS temperature, by optimizing the beam transport and the beam intensity.
- Effect of the release time on the ⁷⁴Rb⁺ production efficiency is presently difficult to estimate with precision, but expected to be strongly lower than in the standard graphite target due to the short range of residus in the catcheur.

TULIP for alkali: Beyond the **anr** project

Association of the TULIP cavity to a more efficient surface ion source

- If MonoNaKe demonstrates its ability to ionise elements having a first ionisation potential up to ~6 eV, the same ioniser could be associated to the TULIP cavity
- extension of the region of ionisable elements while conserving a selectivity

Graphite and rhenium ionisers common to MonoNaKe and TULIP are under realisation

If MonoNaKe tests are satisfying (efficiencies ≥ % for Al, Ga or In), the most performing ionizing material (graphite or rhenium) will be implemented on TULIP.

→ Access to non-alkali neutron-deficient short-lived elements

 ^{61}Ga (167 ms) from $^{14}\text{N}\text{+}^{54}\text{Fe}$, ^{22}AI (91 ms) from $^{16}\text{O}\text{+}^{12}\text{C}$?

Н 13,6										
Li 5,39	Be 9,32									B 8,3
Na 5,14	Mg 7,65									AI 5,99
К 4,34	Ca 6,11		Sc 6,56	Ti 6,83	V 6,75	Cr 6,77	Mn 7,43	Fe 7,9		Ga 6
Rb 4,18	<mark>Sr</mark> 5,69		Y 6,22	Zr 6,63	Nb 6,76	Mo 7,09	TC 7,28	Ru 7,36		In 5,79
Cs 3,89	Ba 5,21	*	Lu 5,43	Hf 6,83	Ta 7,55	W 7,86	Re 7,83	Os 8,44		TI 6,11
Fr 4,07	Ra 5,28	**	Lr 4,9	Rf 6	Db	Sg	Bh	Hs		Nh
Ļ										
		*	La 5,58	Ce 5,54	Pr 5,47	Nd 5,53	Pm 5,58	Sm 5,64		Ho 6,02
		**	Ac 5,17	Th 6,31	Pa 5,89	U 6,19	Np 6,27	Pu 6,03		Es 6,42

TULIP for metals

Coupling of the TULIP cavity to a FEBIAD ion source

The first test was a failure. The second too....

GANIL

10-13 of March, 2025

The fifth works!

TULIP for metals

10-13 of March, 2025

Coupling of the TULIP cavity to a FEBIAD ion source: new design

Objective:

- Producing the same metallic elements as the ones produced in the thick graphite target+FEBIAD,
- but for shorter half-lives isotopes

Coupling of the TULIP cavity to a FEBIAD ion source: new design

TULIP for metals

GANIL

10-13 of March, 2025

Currently on the test bench

- No failure for 2 days at maximum power
- Improvements are under study:
 - Minimum temperature of the cavity, presently equal to 1340°C
 - Homogeneity of the temperature, to limit the cold traps

Next tests will focus on the ionisation of Sn, In, Cd, Ag and Pb

Workshop on R&D for new ISOL beams (SPIRAL 1 and ALTO)

TULIP for more intense primary beams

Design of a rotating wheel

- To increase the possible primary beam intensity by a factor of 7 •
- Or/and to increase the target lifespan

Design requirements: simplicity and radiation hard.

→ Graphite bearing, waterwheel drive, magnetic coupling

Present status:

It works but the rotating speed is limited to ~20Hz by eddy current (Courant de Foucault in French)

New design under process to reach ~50Hz.

Next test by Spring 2025 •

10-13 of March, 202

Waterwheel

GANIL

10-13 of March, 2025

TULIP-FEBIAD for metals

Final objective of the **anr** project

Production of metals around ¹⁰⁰Sn (In, Cd, Ag...)

- Using ⁴⁶Ti (207 MeV@3E+12 pps) or 50Cr (289 MeV@3E+12 pps) on ^{nat}Ni target,
- 3 orders of magnitude between the PACE XS and the M. Chartier* XS: who is right?
- Assuming PACE XS /1000
- Assuming an atom-to-ion transformation efficiency of 10%,

the production rate at the exit of the TISS should be close to 1 pps.

Physics will decide.

*Mass measurement of 100 Sn

M. Chartier, G. Auger, W. Mittig, A. Lepine-Szily, L.K. Fifield, J.M. Casandjian, M. Chabert, J. Fermé, A. Gillibert, M. Lewitowicz, et al.

10

AAPG ANR 2018 GANI Diffusion data base (Alexis Ribet, post-doc)

- Atom-to-ion transformation efficiency in Target-Ion Source Systems depends on release time of radioactive atoms
- Prediction and improvement of production system performances requires the knowledge of diffusion coefficients of atoms in matter at high temperature
- A global view of the diffusion coefficients of atoms in the different target materials is necessary, to directly use them or to extra-interpolate to missing values
- The availability of a diffusion coefficient database was necessary
- Therefore, an important bibliographical work has been done to collect as much as possible **diffusion parameters** concerning a large variety of target-element combinations and for broad temperature range

Th

Pa

U

AAPG ANR 2018

Es

Cf

Fm Md No

Lr

- More than 2000 publications studied for pure elements: Fe (221), Si (178), Cu (173), ...
- Bibliography for some binary alloys → candidate target materials
- Graphical interface to make it easier to use

A Study of Diffusion Coefficients: Database and New Device. <u>A. Ribet, P. Jardin and M. Lalande.</u> Defect and Diffusion Forum, 439 (2025) 139-146

Workshop on R&D for new ISOL beams (SPIRAL 1 and ALTO)

Np

Pu Am Cm Bk

TULIP conclusions

Within the framework of SPIRAL1, TULIP

Gives an access to neutron-deficient RIBs,

- with shorter half-lives than the RIBs produced by fragmentation
- with a more selective in-target production process

Is not competitive in terms of rates for RIBs close to the stability valley, so complementary to the production of RIB by fragmentation

Is a mature principle for neutron-deficient short-lived isotopes of alkali. Nevertheless, the technique can still be improved to extend the production of elements having higher first ionisation potentials.

TULIP for metals works off-line. Must soon be tested on-line. Planned in 2026 for metals around ¹⁰⁰Sn

Use for isotopes from Mg to Ba can be studied, except refractory elements.

Optimisation of the primary beam-target material couple is essential to optimize the production XS

- This optimisation is facilitated by the number of primary beams available at GANIL
- Graphite targets must be favoured, as far more simple to design.
- Presently, a Mo / Ni 4 μm / Mo target is available
- A ⁵⁴Fe target is under development
- A rotating wheel is also under development to reduce the target damage

Would it be possible to use the MNT reactions in TULIP?

GANIL

Thank you for your attention

